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ABSTRACT 

We consider partially hyperbolic diffeomorphisms preserving a splitting 
of the tangent  bundle into a strong-unstable subbundle E uu (uniformly 
expanding) and a subbundle E c, dominated by E uu. 

We prove tha t  if the central direction E c is mostly contracting for the 
diffeomorphism (negative Lyapunov exponents), then the ergodic Gibbs 
u-states are the Sinai-Ruelle-Bowen measures, there are finitely many of 
them, and their basins cover a full measure subset. If the strong-unstable 
leaves are dense, there is a unique Sinai-Ruelle-Bowen measure. 

We describe some applications of these results, and we also introduce a 

construction of robustly transitive diffeomorphisms in dimension larger 
than  three, having no uniformly hyperbolic (neither contracting nor ex- 
panding) invariant subbundles. 
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1. In t roduc t ion  

Uniformly hyperbolic systems [Sm] may present very rich and complicated dy- 

namical features: even a small modification of the initial condition often leads to 

rather different behaviour of the orbit over long periods of time. This means that 

the position of individual points after a large number of iterations is essentially 

unpredictable. Because of this, such systems are sometimes considered "chaotic". 

Nevertheless, hyperbolic systems have very well-defined statistical properties. 

[Si], [Ru], [BoRu] showed that time-averages of any continuous function along 

almost every orbit converge to a limit as time goes to infinity. More precisely, if 

f: M --+ M is a hyperbolic diffeomorphism (similar results hold for flows) then 

there exist finitely many f-invariant probability measures # l , . . . , # k  such that 

for any continuous function ~: M --+ R and for Lebesgue almost every point 

z E M  
n--1  

(1) lira -1 Z f , H + ~  n ~( fJ(z ) )  = ~d#i  
j=0 

for some i. We call basin of  #i the set B(#i)  of points z E M for which (1) 

holds. More generally, an invariant probability measure of a general diffeomor- 

phism is called an SRB (for Sinai-Ruelle--Bowen) measure  if its basin B(#) has 

positive Lebesgue measure. For hyperbolic diffeomorphisms f,  the properties of 

the systems (f, tzi) are now well-understood. In particular, they are exponentially 
mixing (exponential decay of correlation functions) [Bow], and stochastically sta- 

ble [gi], [Yol]. 

One would like to have such a satisfactory understanding of the dynamics 

for very general systems. On the other hand, several robust models that do 

not fit in the hyperbolic theory have been described since the sixties: Lorenz- 

like attractors [Lo], [ASS], [GuWi], H~non-like attractors [He], [BeCa], partially 

hyperbolic diffeomorphisms [ADSm], [Shl], [Mall, [BoD~. An important goal in 
Dynamics in recent years has been to enlarge the framework of hyperbolicity, 

in order to encompass such models in a global theory of "chaotic" dynamical 

systems. 

A program towards such a global theory has been proposed a few years ago by 

J. Palis, see [Pa]. At its core is his conjecture that every dynamical system can 

be approximated by another having only finitely many attractors, all of which 

have good statistical properties (SRB measures, statistical stability). 

The ergodic properties of these systems have been studied to some extent: see 
e.g. [Sp], [CoTr], [Pe2], [Sa] for the Lorenz-like attractors, and [BeCa], [BeYol], 

[BeYo2], [BeVil], [BeVi2] for the H~non-like attractors. Partially hyperbolic sys- 
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terns are a rather large class and exhibit a very broad spectrum of dynamical 

behaviour. See, for instance, the example in [Ka] of partially hyperbolic diffeo- 

morphisms with intertwined basins of attraction. Despite substantial progress, 

e.g. by [A1], [BrPe], [Car], [PeSi], [GPS], [Yo2], their ergodic properties are still 

far from being completely understood. 

In particular, it is not known in which generality such systems admit SRB 

measures, and this problem is a main motivation for the present work. We obtain 

results of existence and finitude of SRB measures, that we state in more detail 

below. These may be thought of as a positive step in Palis' program mentioned 

above. 

1.2  PARTIALLY HYPERBOLIC DIFFEOMORPHISMS. Let M be a compact rieman- 

nian manifold and f be a C 1 diffeomorphism on M. Here we call f par t ia l ly  

hyperbol ic  if there exists a continuous Df-invariant splitting 

(2) T M  = E '~'~ G E c 

of the tangent bundle of M, such that 

[[(Df[E~'~)-I H < 1 and I[Df[ECH I[(DflE'~'~)-I[I < 1. 

In other words, D f i E  u~ is uniformly expanding and dominates  D f i E  ~ : D f  

expands any vector in E ~ less than it expands any vector in E ~ .  (The usual 

definition of partial hyperbolicity is equivalent to either f or f-1 satisfying this 

condition.) More generally, we consider diffeomorphisms with par t ia l ly  hyper-  

bolic a t t rac tors ,  that is, compact subsets A of M such that 

A = N f n ( U )  
n>O 

for some open neighbourhood U of A with closure f ( U )  C U, and there exists a 

splitting T A M  = E u" @ E ~ of the restriction of the tangent bundle to A, with 

the same properties as before. 

Partially hyperbolic systems were used by [Shl] to give the first examples of 
diffeomorphisms (in the 4-torus T 4) which are robustly transitive and, yet, are 

not globally hyperbolic (Anosov). One calls a diffeomorphism f C 1 robus t ly  

t rans i t ive  if any diffeomorphism g in a C 1 neighbourhood of f has orbits dense 

in the ambient manifold. Likewise, we say that f has a C 1 robus t ly  t ransi t ive  

a t t r a c to r  A if for any diffeomorphism g C 1 close to f the maximal invariant set 

A(9) : N 
n>O 
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contains dense orbits. A different construction, that also produces partially hy- 

perbolic maps, enabled [Mall to reduce the minimal dimension of these examples: 

there are C 1 robustly transitive diffeomorphisms in T 3 which are not Anosov. 

All these examples have a strong form of partial hyperboticity: there exists a 

continuous splitting into three nontrivial (positive dimension) subbundles 

T M  = E u~ @ E ~ @ E ~ 

where E ~ is uniformly contracting. On the other hand, an important restriction 

is that the central subbundle E c was always 1-dimensional. This was removed 

by [BoDf], who constructed the first examples of C 1 robustly transitive partially 

hyperbolic (three nontrivial subbundles) diffeomorphisms with arbitrary central 

dimension. 

More recently, [DPU] showed that partial hyperbolicity is, in fact, intimately 

related to robust transitiveness, at least in dimension three: a C 1 robustly tran- 

sitive diffeomorphism of a 3-manifold must be partially hyperbolic. On the 

other hand, [Bon] gives examples of C 1 robustly transitive diffeomorphisms in 

3-dimensional manifolds such that E ~ is trivial. 

Here we produce further examples of this kind, and we also show that the 

results of [DPU] do not extend directly to higher dimensions: we obtain in T 4, 

cf. Theorem C, the first examples of robustly transitive diffeomorphisms that  

do not admit any invariant hyperbolic subbundles. On the other hand, these 

maps do have a weaker hyperbolicity property, namely they admit a dominated 

splitting. In fact, [BDP] announce that  this is always the case for a robustly 

transitive diffeomorphism, in any dimension. 

Another result that concerns us directly is the construction by [PeSi] of Gibbs 

u-states for partially hyperbolic attractors of diffeomorphisms. By Gibbs  u- 

s t a t e s  we mean here invariant probability measures whose conditional measures 

[Ro] along the leaves of the strong-unstable foliation ~'~u (the unique foliation 

tangent to the subbundle E u~) are absolutely continuous with respect to the 

corresponding Lebesgue measure. 

[Car] used their construction to exhibit SRB measures for partially hyperbolic 

attractors of diffeomorphisms derived from Anosov diffeomorphisms through bi- 

furcation of a periodic orbit. The present work is partially motivated by this 

paper, whose results we generalize. 

1.2 STATEMENT OF MAIN RESULTS. Our first main result states that i f  the 

central direction is mos t ly  contracting for the diffeomorphism, then ergodic Gibbs 

u-states  are S R B  measures, and there are finitely m a n y  o f  them. Let us state 
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this in a precise form. We take f:  M --+ M to be a C 2 diffeomorphism satisfying 

conditions (H1), (H2) below. 

(HI) f has an attractor (not necessarily transitive), that is, a compact set A c M 

which is invariant under f and is the maximal invariant set 

A : N s (U) 
n > 0  

in some open neighbourhood U of A with closure f (U)  C U. 

For instance, we may take A to be the whole manifold M. In general, we call 

bas in  of A the set 

B ( A ) -  U f - n ( V )  
n > 0  

of points whose future orbits accumulate on A. 

(H2) There is a continuous decomposition TAM = E ~ @ E c of the tangent 

bundle to M over A and there exists ), < 1 satisfying 

(i) the decomposition is invariant under Dr; 

(ii) [](DS [ EUu)-l[I <__ ,~ and lIDS I E~[[[l(Df t E ~ ) - l l l  -< A for all 

x E A .  

The subbundles E ~ and E r in (H2) are necessarily H51der continuous, and 

the s t r o n g - u n s t a b l e  subbundle E ~ is uniquely integrable, see [BrPe, w We 

denote by 9 T M  the integral foliation, defined over the compact set A. Its leaves 

are C 2 immersed submanifolds of M, with uniformly bounded curvature, see 

[Sh2, p. 79], and they admit the following dynamical characterization: 

. T ~ ( x  ) = j:~U(y) r d (S -n (x ) , f - n ( y ) )  < ~nd(x,y ) for every n > 1. 

Given any point x C A, we denote 

)~_(x) = limsup 1 log IIDI'~IE~II. 
n - + + o o  n 

In other words, ~_ is the largest Lyapunov exponent of f along the central 

direction, wherever this is defined. By Oseledets theorem, see [Ma2, IV.10], 

Lyapunov exponents are defined almost everywhere, with respect to any invariant 

measure. 

Then we state 

THEOREM A: Suppose that the diffeomorphism f satisfies (H1), (H2), and 

(H3) for every disk D u~ contained in a leaf of ffru~ we have A~_(x) < 0 for a 

positive Lebesgue measure subset of points x E D ~ .  
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Then f has finitely many ergodic Gibbs u-states #1 , . . .  ,#k. They are S R B  

measures for f ,  and the union of their basins B(#i)  is a full Lebesgue measure 

subset of the basin B(A) of A. 

We also prove the following statement of uniqueness of SRB measures. 

THEOREM B: Suppose that the diffeomorphism f satisfies (H1), (H2), and 

(H4) all the leaves of the foliation j:~u are dense in A; 

(H5) there exists a disk D ~ contained in some leaf of J : ~  such that A~_(x) < 0 

for a positive Lebesgue measure subset of points x E D ~ .  

Then f has a unique Gibbs u-state #, and it is ergodic. The support o f#  coincides 

with A. Moreover, the basin B(#)  is a full Lebesgue measure subset of B(A), in 

particular, p is the unique SRB measure o f f  in B(A). 

Theorem A is proved in Sections 2 through 4. In Section 5, we explain how the 

arguments can be adapted to give Theorem B. (H1), (H2) are standing hypotheses 

throughout these sections, except if otherwise stated. 

In Section 6 we describe a few examples related to these theorems. First of all, 

we revisit the construction of [Car]. Next, by modifying a beautiful construction 

of [Mall, we obtain the examples of robustly transitive diffeomorphisms without 

uniformly contracting subbundle E ~ we mentioned before. These diffeomor- 

phisms satisfy (H4), and the central subbundle E ~ is mostly contracting in the 

sense of (H3) (which is stronger than (H5)), so Theorem B applies to them. 

By further modifying our construction, we are able to give the first examples 

of robustly transitive diffeomorphisms, in four dimensions, having no invariant 

hyperbolic subbundle. 

THEOREM C: There exists an open subset Lt of DiffX(T 4) such that any f E 14 

is transitive and admits a continuous invariant dominated splitting into two 2- 

dimensional subbundles 

TM = E ~ @E ~u, []DfIE~][ [](DfIE~")-I[[ ~ A < 1 

such that D f i E  c8 is uniformly volume contracting but not uniformly contracting, 

D f i E  c~ is uniformly volume expanding but not uniformly expanding, and neither 

of them admits an invariant subbundle. Moreover, Lt contains an open subset of 

the space of C 1 volume preserving diffeomorphisms. 

A natural problem is to study the properties of SRB measures as we construct 

in Theorems A and B. We mention two very important recent developments. 
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[Cas] introduces a method of 'backward inducing' and applies it to prove expo- 

nential decay of correlations and the central limit theorem (in the Banach space 

of HSlder functions) for a class of attractors including those in [Car]. Exponen- 

tial decay and the central limit theorem are also obtained by [Do], through a 

different approach, for another large class of partially hyperbolic systems with 

mostly contracting central direction ('average contraction property'). 

Another question raised by our results concerns what happens when the central 

subbundle is mostly expanding (in this case it is natural to consider a splitting 

E 8~ @ E r instead). This is the subject of an ongoing project, whose results will 

appear in [ABV]. At present, the general answer is less complete than what we ob- 

tain here for the contracting case, but SRB measures can already be constructed 

in fair generality, specially when E ~ is 1-dimensional. 

The examples of persistently transitive diffeomorphisms without uniformly hy- 

perbolic subbundles given by our Theorem C present a new challenge. We expect 

ideas from [ABV] to be useful, specially when E c8 is mostly contracting and E ~u 

is mostly expanding. 

2. Pes in  t h e o r y  a n d  Gibbs  u-s ta tes  

The following proposition asserts that points x with )~_(x) < 0 have a stable 

manifold, in the sense of Pesin's theory, transverse to the strong-unstable leaf 

passing through x. 

We call uu-disk the image of any embedding into a strong-unstable leaf of 

a euclidean disk with the same dimension as the leaf. The uu-ball  of radius r 

around a point x is the set of pointsin the strong-unstable leaf of x, and whose 

distance to x, with respect to the riemannian metric induced on the leaf, is at 

most r. 

PROPOSITION 2.1: Let  A~_(x) < 0 for every point  x in a posi t ive Lebesgue mea- 

sure subset  Ao o f  some uu-disk  D ~ .  Then  

1. For every point  x E Ao there exists  a C 1 embedded  disk W~oc(x ) tangent to 

E~. at x ,  and such that the diameter  of  fn(W~o~(x) ) converges exponent ial ly  

fast to zero as n -+ Too. 

2. The C 1 disk Wl~oc(X) depends  in a measurable way on the point  x ,  and the 

"foliation" {W~oc(X ) : x E A0} is absolutely continuous. 

The proposition follows from standard arguments in Pesin's theory, see [Pel], 

[PuSh]. We just recall the terminology. 

Given r > 0 we denote D~(E) the tubular neighbourhood of radius e > 0 

around D ~ ,  defined as the image under the exponential map of M of all the 
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vectors of norm less than c > 0 in the orthogonal complement of E~ ~, for all 

x E D uu. If e > 0 is small enough then D~(E)  is diffeomorphic to a cylinder, 

and it comes equipped with a canonical projection 7r onto D ~ ,  which is a C 1 

map. We say that  a C 1 disk 7 crosses  DUb(c) if it is contained in DUU(c) and 

7r induces a diffeomorphism of 7 onto D ~ .  

Absolute continuity means that there exists a sequence (K~)~ of compact sub- 

sets of A0 with Leb(A0\K~) converging to zero as n --+ cx~, and there exist maps 

g .  ~ x ~ WL:~(x) 

associating to every point x in K,~ an embedded C 1 disk W~(x) and satisfying: 

(a) Wl~oc(X) depends continuously on the point x in K~. In particular, there 

exists a uniform lower bound for the size of Wz~oc(x) in Kn; in more precise 

terms, there exists ~,~ > 0 such that the preimage of W~oc(X ) under the 

exponential exp, of M at x contains the graph of a C 1 map defined from 

the 5,~ neighbourhood of 0 in E~ to E~ u. 

(b) Given any 0 < E < ~,~/2 and any C 1 disk ~, crossing the tubular neighbour- 

hood D~U(e) the holonomy map 

P~ : U (~/n W2o~(X)~ ~ K. 
x E K n  

\ /  

defined by projection along the leaves of the foliation {Wt~oc(X) : x E Kn} 
is absolutely continuous 

Leb(pT(A)) = / A  Jp7 d(Leb) for every Borel subset A 

with jacobian Jp7 bounded away from zero and infinity by constants that 

depend only on the compact set Kn and the minimum angle between 7 and 

the local stable manifolds Wz~oc(X). 

COROLLARY 2.2: Let Ao be as in Proposition 2.1. Then there exist r > 0 
and r 1 > 0 such any uu-disk 7 that crosses the tubular neighbourhood D~U(~) 

intersects the union of all Wt~or x E Ao in a subset whose Lebesgue measure 

is larger than ~1Leb(7). 

Proof: This follows easily from Proposition 2.1. Fix n _> 1 such that Kn has 

positive Lebesgue measure, and then fix 0 < r < 5,~/2. By continuity of the 

strong-unstable subbundle E ~'~ and of the local stable manifolds through points 

of K,~, the angle between any uu-disk and those local stable manifolds is uniformly 



Vol. 115, 2000 SRB MEASURES 165 

bounded away from zero (up to reducing ~ > 0, if necessary). The conclusion 

follows. II 

Next we prove some simple facts about Gibbs u-states. By such we mean 

invariant probability measures whose disintegration along the leaves of the strong- 

unstable foliation yields measures which are absolutely continuous with respect 

to Lebesgue measure on the leaves. More precisely, we use the following property 

which is part of the definition proposed by [PeSi]. 

L e t / :  be the strong-unstable leaf through an arbitrary point x E A. Given r > 

0 and W a C 1 (open) disk centered at x and transverse to s denote II(x, W, r) the 

union of all (open) uu-balls 7(z, r) of radius r centered in the points z E WnA. By 

definition, the restriction of it to this fo l ia ted  b o x  II(x, W, r) has a disintegration 

(#z)zewnA with respect to the foliation {7(z, r) : z e W Cl A}, such that  every 

itz is absolutely continuous with respect to Lebesgue measure m.r(z,r) on "y(z, r). 

Moreover, 

d#z (y) = p(y, z) dm~(z,r) 

for some positive function p which is bounded away from zero and infinity, in 

terms only of r and W. We shall denote fi the quotient measure induced by it 

in the space of leaves 7(z, r). This quotient space can be canonically identified 

with the intersection of A with the disk W, and we do so. 

Theorem 4 of [PeSi] implies that partially hyperbolic attractors always support 

Gibbs u-states: 

LEMMA 2.3 [PeSi]: Let a be an arbitrary uu-disk and m~ be the normalized re- 

striction of  Lebesgue measure in o. Then any accumulation point of the averaged 

push-forwards I imn -1 ~ - ~ / ~ ( m ~ )  is a Gibbs u-state. 

The following lemma will be useful in Section 5. 

LEMMA 2.4: The support of any Gibbs u-state it o f f  on A is saturated by ~uu, 

that is, it consists of entire leaves of j:u~. 

Proof: Suppose otherwise, that is, there is some strong-unstable leaf s that 

intersects A = supp it and is not entirely inside A. Take x a point in the boundary 

of A N/ :  inside/ :  (recall that  s is an immersed submanifold of M, at this point 

we endow it with the metric induced by the immersion). Fix any r and W and 

consider the corresponding foliated box H(x, W, r). Our choice of x ensures that 

there exists Y0 E ~,(x, r)NA, and then there exists some small open neighbourhood 
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V of Y0 in A, contained in YI(x, W, r) and such that #(V) = 0. Now 

s s(s..,...,.....,.,)..z,. it(V) = it, (V M ~/(z, r)) dft(z) = n,(:,,) 

Recall that /5  is the quotient measure of it in the space of leaves 7(z, r). Since p 

is strictly positive, the fact that  it(V) = 0 must come from some neighbourhood 

of x in A A W having zero D-measure. More precisely, 

/5(W0) = 0, where W0 = {z E A M W: V M "y(z, r) :fi O}. 

As a consequence, the neighbourhood II(x, W0, r) of x in A has zero it-measure, 

which contradicts the fact that x is in the support of #. I 

The following remark explains the relation between Gibbs u-states and SRB 

measures w h e n  t h e  cen t r a l  d i r e c t i o n  is m o s t l y  con t r ac t i ng .  

Remark 2.5: Let it be an ergodic Gibbs u-state and D uu be a uu-disk contained 

in the support of it. Suppose there exists a positive Lebesgue measure subset 

A0 C D u~ such that A~_(x) < 0 for every x E A0. Then # is an SRB measure. 

Indeed, cf. Corollary 2.2, the union of the local stable manifolds Wl~,c(x ) through 

points of x E A0 intersects any uu-disk close enough to D ~ in a positive Lebesgue 

measure subset. Since # is an ergodic Gibbs u-state, we may take such a disk 

so that  a full Lebesgue measure subset is contained in the basin of it. Then, 

by absolute continuity, local stable manifolds Wl~c(x ) passing through points of 

B(it) form a positive Lebesgue measure subset of M which, clearly, is contained 

in the basin of it. 

2 . 1  A C C E S S I B I L I T Y  CLASSES AND CONSEQUENCES OF (H3). In this subsection 

we assume (H3) in addition to (H1), (H2). 

Let R be the set of r egu l a r  po in t s  of f ,  defined as the set of all points x C A 

satisfying the following pair of conditions: 

t. given any continuous function ~ : M ~ R, both limits (Birkhoff averages) 

n - 1  1 n--1 ! 
lim and lim 

n--~+oo n----}-- ~ 
j=0 j=0 

exist, and coincide; 

2. the largest Lyapunov exponent of f at x along the central direction is well- 

defined and negative: 

lim ! logllDfnlE~l I = lim 1 logll(DYnlE~)_ll I < O. 
n---.}+c~ n n----}--c~ --'/2 
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A strong-unstable leaf is r egu l a r  if Lebesgue almost every point in it is regular. 

We denote S the set of all regular points contained in regular leaves. By Propo- 

sition 2.1, every point x E S has a local stable manifold Wl~,c(X ) tangent to E~ 

at x. 

In what follows we take # to be a Gibbs u-state, and suppose that (H3) holds. 

LEMMA 2.6: The set S has full #-measure, for any Gibbs u-state It. 

Proof: For any foliated box II(x, W, r), let (#z)z be the disintegration of # along 

strong-unstable plaques V(z, r), and/5 be the quotient measure. According to the 

ergodic theorem, condition (1) holds for a full #-measure subset of A. Oseledets 

theorem ensures that the limits in (2) exist and are equal #-almost everywhere. 

So, except for the inequality in (2), all the conditions in the definition of regular 

point are true for #z-almost every point in ~(z,r) ,  and/~-almost every z. Now 

let z be such that the largest central Lyapunov exponent is well-defined for Itz- 

almost every point in 7(z, r). Condition (H3) implies that A~_ < 0 on a positive 

#z-measure subset. Since the lim~_~ oo in (2) is constant over 7(z, r) (because 

this is contained in an unstable manifold), it follows the largest central Lyapunov 

exponent has to be negative #z-almost everywhere in V(z, r). So the set of regular 

points has full #-measure on the box, in fact, /5-almost every V(z, r) intersects 

R in a full #z-measure subset. The lemma follows by considering a (finite or 

countable) covering of A by foliated boxes. | 

Now we say that x, z E S belong in a same access ib i l i ty  class if there are n 

1 and points x = Y0,Yl,-.. ,Y,~ = z all in S and such that  for every i = 1 , . . .  ,n  

at least on of the points Yi, Yi-1 belongs either in the local stable manifold W~o~. 

or in the strong-unstable leaf 5 ruu of the other: 

either y~ E W~oc(Yi_l ) U 9~UU(yi_l) or Yi-1 e WL~c(yi ) U 9r~U(yi). 

Clearly, this defines an equivalence relation. Moreover, if two points belong in 

a same equivalence class then they have the same Birkhoff averages, for every 

continuous function 9~. 

LEMMA 2.7: Accessibility classes are open subsets of S. 

Proof: For any given x E S and 7 be a small neighbourhood of x in $-~u(x). 

Let c > 0 be as given by Corollary 2.2. Given any point y E S close enough to 

x, the strong-unstable leaf of y contains a segment 7y that crosses the tubular 

neighbourhood 7(r Then ~/y intersects the union of local stable manifolds of 
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points in 7 in a positive Lebesgue measure subset Ay. In fact, almost every 

point in Ay is in the local stable manifold of a point in S n 7, since S has full 

Lebesgue measure in 7, and the stable foliation is absolutely continuous. Since S 

also has full Lebesgue measure in 7y, we conclude that  a full Lebesgue measure 

subset of Ay consists of points in S. By construction such points are in the 

same accessibility class as x and as y. This proves that  every y E S in an open 

neighbourhood of x belongs in a same accessibility class as x. | 

COROLLARY 2.8: The ergodic components of a Gibbs u-state # are normalized 

restrictions of # to accessibility classes, and so they are also Gibbs u-states. 

Proof." Since accessibility classes are open in S there are at most countably many 

Of them. Then, the classes which have zero measure cover only a zero measure 

subset of S, and so they can be discarded. Recall also that  S has full p-measure. 

Since Birkhoff averages are constant on accessibility classes, for any class A with 

#(A) > 0 the probability #A given by #A(B) = # ( A n  B)/#(A) is ergodic. So 

the ergodic components of/z are precisely these normalized restrictions #A, and 

so they are absolutely continuous along strong-unstable leaves. II 

L~MMA 2.9: Under condition (H3), there are finitely many accessibility classes, 

and so f has only finitely many ergodic Gibbs u-states. Moreover, their supports 

are disjoint. 

Proof'. Let Ca, n _> 1 be accessibility classes. Choose 7n a ball with radius 

uniformly bounded from below in a regular strong-unstable leaf, such that  SN7n 
is nonempty and contained in C,~. Taking a subsequence, we may suppose that  

7n converges to some uu-disk D ~ .  By (H3) and Proposition 2.1 there exists 

a positive Lebesgue measure subset A0 of D ~ such that  each point x in A0 

has a Pesin local stable manifold. Moreover, restricting A0 if necessary, we may 

suppose that  Wl~oc(X) contains a ball of uniform radius 5 around x (the distance 

from x to the boundary of Wz~oc(x) is larger than 6), for every x in A0. Then 

these local stable manifolds intersect 7,~ in a positive Lebesgue measure subset, 

for every large value of n. This implies that  the points of S n ")'n are in a same 

accessibility class for every large n. So there are only finitely many distinct classes 

C,~. The second part  of the lemma is now an easy consequence of Corollary 2.8. 

These arguments also prove that  the supports of different ergodic Gibbs u-states 

are disjoint. | 

Cf. Remark  2.5, under (H3) every ergodic Gibbs u-state is an SRB measure. 

Therefore, to prove Theorem A it is enough to show that  the basins of these 
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ergodic Gibbs u-states cover a full Lebesgue measure subset of the basin of at- 

traction. This will be given by Proposition 4.2. 

We note tha t  in the present section, as well as in the next one, we do not need 

the full strength of the definition of at tractor  in (H1). 

Remark  2.10: For the construction of Gibbs u-states by [PeSi] it is sufficient that  

A be a compact  f- invariant  set, and that  there exist a strong-unstable foliation 

(uniformly contracted by negative iterates) whose leaves are contained in A and 

whose tangent bundle is H61der continuous, cf. [PeSi, p. 421]. These assumptions, 

weaker than (H1)+(H2),  together with (H3), are also sufficient for all our results 

in the present Section 2 (and in Section 3). So, they suffice to ensure that  there 

exist only finitely many Gibbs u-states, and they are SRB measures. Tha t  is, A 

is a measure-theoretical at tractor,  even if it may not be a topological attractor.  

This is precisely the case in the examples of [Ka]. 

3. Distortion bounds 

In this section we prove certain bounds on the distortion of iterates of f restricted 

~to strong-unstable leaves or, more generally, to submanifotds tangent to a strong- 

unstable cone field C a'` in a neighbourhood of the attractor.  First, a few words 

of explanation. 

We adopt the following conventions. A continuous cone field C = (C,:) defined 

on a subset V C M is called c e n t r e - u n s t a b l e  if it is forward invariant: 

O f ( x ) .  Cx C CI(x) for every x E Y Cl f - l ( Y ) .  

We call it s t r o n g - u n s t a b l e  if it is strictly invariant, Dr(x)  �9 C,  is contained in 

interior(C/(~)) U {0}, and every vector in it is uniformly expanded: there is a > 1 

so that  

[IDf(x). vii ~ ,~llvll for every ,, e c~ and x e V A f - l ( v ) .  

Finally, a continuous cone field is c e n t r e - s t a b l e ,  respectively, s t r o n g - s t a b l e  for 

f if it is c e n t r e - u n s t a b l e ,  respectively, strong-unstable for f - 1 .  

Hypothesis (H2) implies the existence of a strong-unstable cone field C u~ de- 

fined on a neighbourhood V C U of A. For points in x C A we may take C~ ~ 

to consist of the tangent vectors whose angle to the direction of E "`u is less than 

some small constant ~ > 0. This defines a continuous cone field on A which is 

sent strictly inside itself by Dr,  and whose vectors are uniformly expanded by 

Df .  Then it suffices to consider an arbitrary continuous extension of this cone 
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field to a small neighbourhood V of the attractor, which we also denote C ~ .  By 

(H1), Y may be taken invariant under f in the sense that f ( V )  C Y.  We say 

that a disk 3  ̀C V is t a n g e n t  to  C ~ if the tangent space to 3  ̀at every point x 

is contained in C~ ~. 

For a point x e A we denote (JUUf)(x) the absolute value of the determinant 

of Df[EU'~: E uu -+ E~(~), and call it the s t r o n g - u n s t a b l e  j a c o b i a n  o f  f a t  x. 

LEMMA 3.1: Given L > 0 there exists L1 > 0 such that, given any C 2 disk 

3  ̀C V tangent to the strong-unstable cone l~eld with curvature less than L, then 
every positive iterate fJ(3`) has curvature bounded by L1. 

Proof." We start with some preliminary remarks. Clearly, the content of the 

claim does not depend on the choice of a smooth riemannian metric in the neigh- 

bourhood V of A. For convenience, we consider a metric in which the central 

bundle and the strong-unstable bundle be nearly orthogonal. More precisely, we 

choose the metric in such a way that, for some uniform constant ,kl < 1, 

(i) [[Df. vii _> All[Iv[[ for every v in a strong-unstable cone; 

(ii) (HDf .w[[/Hwl[ ) < AI(I[Df .vH/[lvl[ ) for every v in the strong-unstable cone 

and w orthogonal to v. 

Strictly speaking, this requires that the width of the strong-unstable cone field 

be small enough, but this can always be achieved by replacing V and C ~u by 

iterates fN  (v)  and D f N . C uu, for fixed large N. 

For the sake of clearness we treat first the case when E ~ has dimension 1. Let 

aj be the parametrization by arc-length of fJ(3`), j > 1. Then the curvature of 

fJ (3') may be written 

k ( f f ( 3 ` ) )  - I det(aJ' aj)l ll jll3 -II  ll. 

Given two vectors u, v in a d-dimensional euclidean space, we use det(u, v) to 

denote the ( d -  2)-linear form associating to each (wl,.  �9 �9 wn-2) the determinant 

of (u, v, w l , . . . ,  w,~_~). Note that det(u, v) depends bilinearly on u and v. Now, 

0j+l = f(crj) is a parametrization of fj+l(3`) and 

Oj+l = D f .  ~rj and  0j+l  ~- D f .  ~j + D2f  �9 (drj, hi). 

Hence, by bilinearity, 

k(ff+i(3`)) < I d e t ( n f .  ~rj ,Df.  5j) I 
- HD f . ~jH a + 

I d e t (D f"  &j, D2f  �9 (aj, aj)l 

[IDf" &ill 3 
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Since I[&jll = 1, and vectors in the strong-unstable cone are expanded by D f ,  
the second term is bounded by 

IlD2 fll < ]lD2 fll. 
I[Df"  jll 2 - 

Similarly, the first term is bounded by 

IlDf " ~jll 
<- "x2111 J II = 

In this inequality we use properties (i) and (ii) of the riemannian metric, together 

with the remark that  63 is orthogonal to drj. Altogether, we get that  

k( fJ+a (7) ) < A~ k( fJ  ('7) ) + IID2 f l[ 

for every j .  By recurrence, we find that  

IID2 fl] < )~'~L + IID2 fll 
k(fn(3")) <- )~2'~k("/) + 1 - ~--~1 - 1 - )~-~1' 

for every n _> 1, and this completes the proof with L1 = L + I I D ~ f l I / ( 1  - AT). 

The general case dim E uu _> 1 follows from the same arguments, as followQ. 

Given a point P l c  fY+l(7) and a tangent vector vl to fJ+a(7) at Pl, let p and v 

be their preimages under f and Df(p) ,  respectively. Choose a curve a C fJ(7) 
tangent to v at p, and whose second derivative is orthogonal at p to the disk 

fJ (3'). By recurrence, we may suppose that  the curvature of a at p is bounded 

by some large constant Lx. Then the same calculation as before shows that  

the curvature of al  = f (a )  at Pl is also bounded by L1, if this has been fixed 

sufficiently large. The same remains all the more true for the component of the 

curvature normal to the f j+l  (3'). This means that  the second fundamental form 

of f j+l  (7) is uniformly bounded. As a consequence, the curvature of the f j+l  (7) 
is uniformly bounded over all j > 0. | 

Remark 3.2: It  also follows that  

k(f~(7))  < 1 + - -  

for every sufficiently large n _> 1. 

IID:f[I 
1 - , ~ '  

1 We are grateful to H. Rosenberg for pointing out this argument to us. 
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LEMMA 3.3: Given L > 0 there exists K > 0 such that given any C 2 disk 7 C V 

tangent to the strong-unstable cone field and with curvature less than L, and 

given any n >_ 1 such that diam(f~(3,)) < 2L, then 

1 < (JTf~)(x) < K 
g -  ( jTfn)(y)  - 

for every pair of points x, y E 7, where J~f(z) = [det Df[Tz7] is the jacobian of 

f along 7. 

Proof: By Lemma 3.1 the curvature the iterates fJ(7) ,  J >  1, of 3' is uniformly 

bounded. So the jacobian Jyj(7) is C-Lipschitz continuous for some uniform 

constant C > 0. On the other hand, the fact that f is uniformly expanding along 

any direction contained in C ~ implies that 

d(fJ(x), i f (y))  < An-Jd(f~(x), fn(y))  < A~-J2L 

for every x, y as in the statement, and every j = 0, 1 , . . . ,  n. Using the relation 

log (Ju~fn)(x) 
( ju~fn)(y)  

n--1 

< ~ I log(JUt'f)(fJ (x)) - log(J~ '"f)(ff  (Y))I 
.4=0 

we get that  

n- -1  n - -1  

log (j~fn)(y)(juufn)(x) - < ~ Cd(fJ(x) '  fJ(Y)) - < ~ c(An-J2L)" 
j=o j=o 

o o  
Hence, it suffices to take K = exp (~ i=  0 C(Ai2L)). II 

4. P r o o f  o f  T h e o r e m  A 

To prove Theorem A we only have to show that Lebesgue almost every point in 

the basin of A is in the basin of some ergodic Gibbs u-state. 

LEMMA 4.1: Every uu-disk a C A has a positive Lebesgue measure subset of 

points which are in the basin of some ergodic Gibbs u-state. 

Proof." By Lemma 2.3 every accumulation point of the sequence of averaged 

push-forwards of Lebesgue measure supported on a is a Gibbs u-state. Let #o be 

any accumulation point and #0 be an ergodic component of #0. By Corollary 2.8, 

#0 is also a Gibbs u-state. Let a0 be a uu-disk in the support of it0 and such that  

Lebesgue almost every point of a0 is in the basin of #0. Then a0 is accumulated 
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by disks contained in the iterates S'~(a). By (H3) and Proposition 2.1, a positive 

Lebesgue measure subset of points in 00 has a local stable manifold. Then for 

every large n, f'~(a) has a positive Lebesgue measure subset of points which are 

in local stable manifolds of points of a0 and, consequently, are in the basin of 

tt0. Then the same is true with a in the place of fn (a ) ,  which proves our claim. 

I 

PROPOSITION 4.2: The union of the basins of all the ergodic Gibbs u-states is a 

full Lebesgue measure subset of the basin of attraction. 

Proof (assuming d i m E  u~ = 1): Let #1 , . . .  ,#N be the ergodic Gibbs u-states 

of f .  Suppose Z = B(A) \ B(#I)  U . . .  U B(#N) had positive Lebesgue mea- 

sure. Since the set Z is invariant, Z n V would have positive measure for any 

neighbourhood V of A. Take V such that  the strong-unstable cone field C u~' is 

defined on it. Let x0 be a Lebesgue density point of Z n V, and fix some C 1 

foliation of a neighbourhood of it, tangent to the strong-unstable bundle E ~'~ at 

the point x0. The leaves of such a foliation are tangent to the cone field C u ' ,  

as long as the neighbourhood is small enough. Moreover, the intersection of 

Z n V with some leaf 3  ̀must have positive Lebesgue measure inside 3'- Then, 

let x be a point of density of 3  ̀N Z N Y C 3' \ (B(#I)  U - . .  U B(#N))  inside 7. 

For each large n, let 3`~ be the neighbourhood of radius L around f'~(x) inside 

fn (7  ). Then f- '~(Tn) form a decreasing sequence of neighbourhoods of x. Since 

we suppose that  3  ̀is one-dimensional, we may conclude that  the relative measure 

of B(#I )  U . . -  U B(#N) in f-~(3`~) goes to zero as n --+ co. Using the bounded 

distortion Lemma 3.3, the same remains true with 7,~ in the place of f-n(%~). 

By Ascoli-Arzela, there exists a subsequence 7,~k converging to some uu-segment 

700. Lemma 4.1 tells us that  3`00 has a positive Lebesgue measure subset $1 of 

points in B(#I )  U -.- U B(ttN). Moreover, there is a positive Lebesgue measure 

subset $2 C $1 of points having local stable manifolds with size bounded from 

below. By Corollary 2.2, the union of these local stable manifolds cuts %~, large 

n, in a fixed proportion, and this gives a contradiction. I 

The difficulty in extending the proof to higher-dimensional strong-unstable 

bundle lies in the construction of disks %~ intersecting the union of the basins 

of the Gibbs u-states in a set with small relative measure. Note that  if we take 

3`~ a ball of fixed radius around f'~(x) as we did before, then S-n(3`~) need not 

be a ball, and so we can not use the density point property. Forward iterates 

f'~(an) of balls a,~ around x are no good either: if we take these S'~(an) with 

bounded diameter, as required by the distortion lemma, they may not contain 
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a sufficiently large ball, as needed in Corollary 2.2. This difficulty is handled in 

Lemma 4.3. 

LEMMA 4.3: Let L > 0 be fixed. Given any disk a C V tangent to the strong- 

unstable cone field, and given any  n sutficiently large, there exist open sets Vi C 

Wi, i -- 1 , . . . ,  k(n) such that 

(a) the Vi are two-by-two disjoint; 
k(,~) 

(b) Leb(U~= 1 Wi) converges to LeD(a) as n ~ oo; 

(c) each f'~(V~), i = 1 , . . . ,  k(n), is a ball of radius L inside f'~(a); 

(d) each f~(Wi) ,  i --- 1 , . . . ,  k(n), is a ball of radius 2L inside f~(a) .  

Proof." Given any large enough n, let B(xi,  L), i = 1 , . . . ,  k(n), be a maximal  

family of disjoint balls of radius L contained in fn(a) .  This means tha t  for any 

other  x E f n ( a ) ,  the ball of radius L around x intersects either the boundary  of 

a or B(xi ,  5)  for some i = 1 , . . . ,  k(n). In particular the family B(xi ,  2L) covers 

the set of points in fn (a )  whose distance to the boundary  is larger than  L. We 

take 

Vi = f - n ( B ( x i ,  L)) and Wi = f - n ( B ( x i , 2 5 ) ) .  

We are left to  prove part  (b) of the statement.  For this note tha t  the union of 

the Wi, i = 1 , . . . ,  k(n), contains the set of points of a whose distance to the 

boundary  of a is larger than  AnL, where A-1 is the rate of expansion of D f  on 

the s t rong-unstable  cone field. The Lebesgue measure of the complement  of this 

set goes to zero as n goes to infinity, and so the proof is complete. | 

Now we prove the general case of Proposi t ion 4.2. 

Proof: Suppose there was a positive Lebesgue measure subset of B(A) not  in 

B(#I )  U .. .  U B(#N) .  Then there would be some disk "y tangent  to the strong- 

unstable cone field and a density point x of "y \ (B(# I )  U - - -  U B(#N))  inside % 

This is proved just  as in the previous case. Let am be a decreasing sequence of 

balls a round x in "y such tha t  the relative measure of B ( # I )  U . . -  U B(#N)  in 

a m goes to zero as m --~ oc. For each m let Vm,i and Wm,i be the open sets 

obtained by taking a = am in Lemma 4.3 (for each m we choose n = n(m)  large 

enough so tha t  the lemma applies). Since the curvature of the iterates of "y is 

uniformly bounded,  cf. Lemma 3.1, Leb(f '~(V~)) /Leb(f '~(Wi)) is  bounded  away 

from zero (by some constant  tha t  depends only on the curvature  bound,  and 

on the dimension of "/). Propert ies (b), (c), (d) in the lemma, combined with 

the dis tor t ion Lemma 3.3, ensure tha t  the union of Vm,i over all i covers a fixed 
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fraction of a~ ,  for every m. Since these Vm# and Vm,j are disjoint whenever 

i # j ,  and in view of the choice of the am, we may choose some Vm,i(m) so that  

Leb (Vm,i(m) n (B(/. t l )  U . . .  u B(ttN))) 
~.~0 as m ~.  oo. 

Leb(Vm,i(m)) 

Using the bounded distortion lemma once more, we conclude that  the same is 

true with 3'm = f~(m)(Vm,i(m)) in the place of Vm,i(m). Recall from (c) that  these 

~m are balls of radius L. Now the proof proceeds precisely as before. II 

The proof of Theorem A is now complete. 

Remark 4.4: The argument of the proof of Proposition 4.2 proves a bit more: 

given any disk 3' C B(A) tangent to the strong-unstable cone field, Lebesgue 

almost every point in q' is in the basin of some ergodic Gibbs u-state. So, recall 

Lemma 2.6, A~_ < 0 Lebesgue almost everywhere in 3'. 

5. P r o o f  o f  T h e o r e m  B 

Finally, we prove Theorem B. More precisely, we show that  hypotheses (H4) and 

(H5) imply (H3), and that the set S (introduced in Section 2.1) consists of a 

unique accessibility class. Then A supports a unique ergodic Gibbs u-state #, 

and B(#) contains a full Lebesgue measure subset of the basin of A. We also 

deduce that  supp/~ = A. 

We fix a uu-disk D u~ as in (H5), and let A0 be a positive Lebesgue measure 

subset such that A~_(x) < 0 for all x C A0. 

LEMMA 5.1 : 

1. Given any e > 0 there exists L1 > 0 such that any uu-bM1 3" with radius 

larger than L1 is e-dense in the attractor A. 

2. Given any e > 0 there exists L2 > 0 such that any uu-ball 3" with radius 

larger than L2 contains a subdisk that crosses the tubular neighbourhood 

D '~' (s) of D '~'. 

Proof: The proof of the first part is by contradiction. Suppose that there exists a 

sequence 7,~ of uu-balls and a sequence of points xn E A such that  radius(7~) > n 

and 7,~ N B(xn ,  e) = 0, for every n _> 1. Up to taking subsequences, we may 

suppose that  (xn)~ converges to some point x E A. Then there exists no > 1 

such that  7,~ N B(x ,  ~/2) = 0 for every n > no, and so 

g 
closure( U 3'o)N (x,5/=0 

n>no 



176 C. BONATTI AND M. VIANA Isr. J. Math. 

On the other hand, closure(Un>no 7n) must contain some leaf of 2 ruu (e.g. the 

leaf through any accumulation point of the sequence of center points of the %~), 

because radius(%) --+ oc. Since any such leaf is dense, by (H4), we have reached 

a contradiction. The first claim is proved. 

To prove the second one, let x0 be in the interior of D ~u and choose 5 > 0 

small enough so that  any point x E B(xo, 5) M A is in a uu-disk % that  crosses 

DUU(s). By the first part  of the lemma, there exists L1 > 0 such that  any uu-ball 

with radius larger than L1 intersects B(x0,5). Take L2 = L1 + d iam(D u~) + 1. 

Given any uu-ball ? with radius larger than L2, let ~,r be the uu-ball of radius 

L1 centered at the same point. Then ~r intersects B(xo, 5) at some point x. Our 

choice of L2 ensures that  ~, contains ~x, and so the proof is complete. I 

Condition (H3) is an immediate consequence. Given any uu-disk % some 

iterate f~(7)  contains a ball of radius L2. By Lemma 5.1 this ball intersects the 

union of the local stable manifolds of points in A0 in a positive Lebesgue measure 

subset B0. Then f-'~(Bo) C ~ has positive Lebesgue measure, and ~_(x)  < 0 

for every x E B0. As a consequence we even have A~_ < 0 Lebesgue almost 

everywhere in 7, cf. Remark 4.4. 

The next lemma, which is the last step in the proof of Theorem B, follows 

directly from Lemmas 2.4 and 2.9, together with the fact that  strong-unstable 

leaves are dense. 

LEMMA 5.2: The map f has a unique Gibbs u-state # on A and it is ergodic. 

Moreover, the support of it is the whole attractor A. 

6. E x a m p l e s  

In this section we describe a number of examples related to our results. 

The following notations are useful. Given a disk o. tangent to the strong- 

unstable cone field, we let d(x, cOo) be the minimum length of a curve in a con- 

necting x to a point in the boundary of o., and call it the d i s t a n c e  f r o m  x to  

t h e  b o u n d a r y  o f  o.. Then we call i n t e r n a l  r a d i u s  of a 

p(o.) = sup d(x,  cOO.). 
xEcr 

We use similar notions for disks inside leaves of a central foliation ~-c. We also 

let dc(x, y) be the c e n t r a l  d i s t a n c e  between two points in a same leaf of ~-c, 

defined as the length of the shortest curve connecting the two points inside the 

central leaf. And we define the c e n t r a l  d i a m e t e r  of a subset of a central leaf 

using this distance. 
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6.1 DA ATTRACTORS.  The first class of examples, studied by [Car], consists of 

a C 1 open set of diffeomorphisms f with transitive attractors on the torus T a, 

derived from an Anosov (or globally hyperbolic) diffeomorphism f0 through a 

Hopf bifurcation. More precisely, 

(a) there exist a constant A < 1 and a Df-invariant splitting of the tangent 

space T M  = E uu @ E c such that d i m E  uu = 1, d i m E  c : 2, 

II(Df l EUU)-lll <_ ~ and II(Df l EC)II II(DI I EUU)-IlI <_ .~, 

and both subbundles E ~ and E c are uniquely integrable; 

(b) f has a hyperbolic repelling fixed point p, obtained from a hyperbolic saddle 

of f0 through a Hopf bifurcation; 

(c) every strong-unstable leaf of a point in A = T 3 \ W~'(p) is dense in A; 

(d) for any uu-segment ? there exists a full Lebesgue measure subset of points 

z in 7 such that ~_(z) < 0; 

(e) f does not admit an invariant strong-stable (i.e., uniformly contracting) 

subbundle E ss. 

As a consequence of (c), A is nowhere dense and it is transitive for f .  

For this class of systems, [Car] proves that there exists an SRB measure sup- 

ported on A, and this was a main inspiration for our Theorem B. Since the proof 

of property (c) for her systems [Car, Lemma 1] seems to have a gap (there is no 

uniform contraction on the central bundle in the whole A, this was pointed out 

also by A. A. Castro and J. C. Martin), and this is a key assumption in Theorem 

B, we give here a detailed proof, based on an idea of [Mall. 

Property (d) is also crucial in Theorem B. For these examples it can be read 

out from [Car], but we include (in Section 6.3) a direct argument that  applies 

also to another class of examples we introduce in the next section. Property (e) 

is not in [Car], and we also prove it below. 

One considers an Anosov diffeomorphism f0: T 3 --+ T 3, with one expanding 

and two contracting directions. We suppose that  the norm of D f  along the stable 

subbundle and the norm of D f  -1 along the unstable bundle are bounded by a 

constant A0 < 1/3. Let p be a fixed point of f0 and 5 > 0 be a small constant. 

Denote V2 = B(p,  (~/2), and V3 = B(p, 3(5). Then we deform f o  1 inside V2 by 

isotopy in such a way that: 

(1) the continuation of the fixed point p goes through a Hopf bifurcation, and 

becomes a repeller (staying all the time inside V2); 

(2) in the process, there always exist a strong-unstable cone field C ~u and a 

centre-stable cone field C ~s, defined everywhere, such that  C c8 contains the 

stable direction of the initial map f0; 
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(3) moreover, the width of the cone fields C ~ and Ccs are bounded everywhere 

by a small constant a > 0. 

In particular, by [HPS], the map f we obtain in this way has an invariant central 

foliation ~ ,  tangent to the cone field C ~s. Moreover, this foliation is topologically 

conjugate to the stable foliation 9v~ of f0 (because it remains normally expanding 

all the way during the isotopy), and so all its leaves are dense in T 3. On the other 

hand, there is also a unique strong-unstable foliation ~-~  invariant under f and 

tangent to centre-stable cone field C ~ ,  whose leaves are uniformly expanded by 

f. 
(4) There exist a constant a > 1 and a neighbourhood 1/1 of p contained in 

1/2 A W~(p), such that J~ = { det Df-l[T~C{ > a outside 1/1. 

(5) The map f - 1  is 6-C ~ close to f o  1 everywhere and it is sufficiently Cl-close 

to f o  1 outside V2 so that I](Df-ItTJrC)-I{I < A <_ 1/3 outside V2. 

These conditions hold for a whole CLopen set/A of diffeomorphisms of T 3. 

We fix L > 0 large enough so that every segment of an unstable leaf of f0 with 

length L/2 is ~/2-dense in every stable leaf of f0. Choosing a in (3) sufficiently 

small, we ensure that every segment with length less than 2L in a strong-unstable 

leaf of f is C l close to some segment in an unstable leaf of f0, and every disk 

of diameter less than 5(~ contained in a central leaf of f is C 1 close to some disk 

contained in a stable leaf of f0- As a consequence, every segment of length L of a 

strong-unstable leaf of f is 5-dense in every central leaf of f (with respect to the 

central distance). We suppose that 5 > 0 is small enough so that the minimum 

central distance between two connected components of the intersection of 1/3 with 

any central leaf is larger than 1006. 

LEMMA 6.1: For every f E Lt as before, every strong-unstable leaf is dense in 

T 3 \ W~(p). As a consequence, W~(p) is dense in T 3. 

Proof: Let W C T 3 be a nonempty open set not contained in W"(p). Then 

there exists some central stable leaf F c and a nonempty open disk D C W A F c 

which is not contained in W "(p). 

CLAIM 1: Some negative iterate of D has central diameter larger than 1006. 

There are two possibilities. If D does not intersect W~(p) at all, then f -~(D)  

is disjoint from 1/1 for every n _> 1, and so its Lebesgue measure goes to infinity, 

by (4). As a consequence, the central diameter of f-'~(D) also goes to infinity 

as n --+ co. Therefore, it suffices to take any large n. In the second case, D must 

intersect the boundary of some connected component of W~(p) N F c. It follows 

from the local theory of Hopf bifurcations that the boundary OW~(p)loc of the 
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connected component Cp of W ~ (p) N V2 that contains p coincides with the local 

unstable manifold of the invariant circle formed at the bifurcation. In particular, 

it is invariant under f - 1 .  Then f-~(D) intersects OW~(p)loc for every large 

n >_ 1. Since f-n(D) is not contained in W~(p), it must contain an open subset 

D1 outside the connected component Cp and whose boundary touches OW ~ (P)loc. 
Then the boundary of every f -k (D1)  touches OW~(p)loc. If f-k(D1) is disjoint 

from V1 for every n > 1, we may use the same argument as in the previous case, 

to conclude that  the central diameter of f-k(D1) goes to infinity as k ~ oc. If 

f-k(D1) intersects V1 for some k > 1, then the closure of f-k(D1) intersects 

two connected components of the intersection of V2 with a central leaf. Hence, 

due to our choice of 5, the central diameter of f -k (D1)  is larger than 1005. We 

completed the proof of our claim. 

This means that,  up to replacing D by some iterate f-re(D), we may suppose 

right from the start that  the central diameter of D is larger than 1005. 

CLAIM 2: There exists x in D such that f-n(x) E T 3 \ V3 for every n > O. 

By our choice of 6, the central neighbourhoods of radius 405 around the con- 

nected components of V3 N F c are two-by-two disjoint. On the other hand, since 

F0 = D has central diameter larger than 1005, it can not be contained in any of 

those neighbourhoods. So, by connectivity, there exists x0 ~ F0 whose central 

ball B0 of radius 355 is disjoint from V3. Since F0 is too large to be contained in 

B0, we may take a compact connected subset F~ C F0 joining x0 to the boundary 

of B0. By (5), f-l(Bo) contains the central ball of radius 

1 
355 > 1005 

around f-l(Xo). In particular, the diameter of F1 = f - l ( P ~ )  is larger than 

1006. Repeating this procedure, we construct a sequence F~, n > 0, of compact 

connected nonempty sets such that 

f~ ( r~ )  c f n - l ( F ~ _ l  \V a )  

for every n > 1. This implies that Kn = f'~(F,~ \ V3) is a decreasing sequence of 

compact sets, and any point x C fq~___0K,~ satisfies the conclusion of Claim 2. 

Now, let x be any such point, that  is, f-n(x) ~ V3 for every n > 1. In 

particular, every disk of central radius 25 around an iterate f-n(x) is disjoint 

from V2. Now let Ds be any small disk around x and contained in D. By (5), 

iterates f-n(D~) have exponentially increasing internal radius, as long as this 

internal radius is smaller than 25. Therefore, there must be some N > 1 for 



180 C. BONATTI AND M. VIANA Isr. J. Math. 

which the internal radius of f -N(De)  is at least 25. Then f -N(De)  intersects 

every segment of length L of any strong-unstable leaf (and so it intersects every 

strong-unstable leaf). Therefore, De C D intersects every strong-unstable leaf. 

This proves that  every strong-unstable leaf is dense in the complement of WU(p). 
In particular, WU(p) is dense in T 3 because the strong-unstable leaf of p is dense 

in T 3 \ W u(p). | 

We also observe that f can not admit an invariant strong-stable bundle E ss. 

This is clear if f0 has some periodic point q ~ p with complex contracting eigen- 

values. We may choose V3 small enough to be disjoint from the orbit of q, and 

then q is also a periodic point for f .  Since the contracting eigenvalues are also 

unchanged, there can be no invariant contracting direction. 

With a bit more effort we can obtain the same conclusion when all the periodic 

points of the Anosov diffeomorphism have only real eigenvalues. We use the fact 

that  the invariant circle C formed at the Hopf bifurcation is normally hyperbolic, 

see e.g. [RuTa, Remark 7.3]. So, such a strong-stable bundle would be tangent to 

the central leaf F c containing C and transverse to C inside the TF c. Then E ss 

would be everywhere tangent to the central foliation and transverse to the strong- 

unstable manifold W u~ (C) of C, defined as the union of the strong-unstable leaves 

through points of C. Let q be a periodic hyperbolic saddle point of f ,  of period 

k _> 1, whose orbit is disjoint from V3 (it exists if V3 is small, i.e. if we fix 5 small 

enough). Then q has stable index 2 and its stable manifold contains a central 

ball Bq of radius 2(f around q. In view of the way we have chosen the constant L 

associated to (f, the local strong-unstable leaves of radius L around every point 

E C intersects Bq transversely. By considering the first (i.e. the closest to 

inside the strong-unstable leaf) intersection of these strong-unstable leaves with 

the stable manifold of q, we conclude that the intersection of W~'~(C) with the 

stable manifold W~(q) contains some connected component C (a circle). Then 

E s~ is transverse to every fk j (~ ) ,  j > 1, inside TWO(q). Since the diameter of 

fkj  (~) goes to zero as j ~ co, we conclude that E ~ can not be continuous at the 

point q. This contradicts the fact that a strong-stable subbundle is necessarily 

HSlder continuous. 

6.2 TRANSITIVE DIFFEOMORPHISMS WITHOUT STABLE BUNDLE. Using similar 

arguments we are. also able to exhibit new C 1 open sets of transitive diffeomor- 

phisms in (the whole) M = T 3 which admit no invariant strong-stable (or strong- 

unstable) subbundle E ~s. That  is, there is a Df-invariant dominated splitting 

T M  = E '~ @ E ~ into a 1-dimensional strong-unstable subbundle E ~ and a 2- 

dimensional subbundle E ~. On the other hand E ~ is not uniformly hyperbolic 
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and does admit an invariant subbundle. The first examples of this kind were ex- 

hibited by [Bon]. The present construction may be thought of as a modification 

of an example of [Mal]. 

As in the previous section, we start with an Anosov diffeomorphism f0 and a 

fixed point p of f0. We deform f0 by isotopy in a neighbourhood V2 = B(p, 5/2) 

of p, in such a way that the map f we obtain (actually, a whole Cl-open set 5t 

of maps) : 

(A) satisfies the global properties (2), (3), (5) above; in particular, f has a 

strong-unstable foliation ~ ' ~  and a central foliation ~-c as before; 

(B) has three hyperbolic fixed saddle points inside V2, contained in a same 

central leaf FC: one saddle with stable index 1 and two saddles with sta- 

ble index 2; at least one of the index 2 saddles has complex contracting 

eigenvalues; 

(C) there exists a > 1 such that JC - - [ d e t D f - l [ T ~ C [  >_ a at every point. 

One way to obtain (B) is to have p go through a pitchfork bifurcation, as one 

of its contracting eigenvalues becomes 1. Then, the stable index changes from 

2 to 1, and two other saddle points, of index 2, are created. Then it suffices to 

make the contracting eigenvalues of one of these new saddles become complex 

numbers. See Figure 1. As before, we suppose that a > 0 and 5 > 0 are small. 

tt 
Figure 1. 

LEMMA 6.2: For every f E bl as before, every strong-unstable leaf is dense in 

T a. As a consequence, f is transitive. 

Proof: As in the first step of the proof of Lemma 6.1, we show that any disk 

D in a central leaf has a negative iterate f- '~(D) with central diameter larger 

than 1005. This follows from property (C), which is a stronger version of the 

property (4) we had in the previous case. The second step of the proof of Lemma 

6.1 translates immediately to this case, proving that some point x in f- '~(D) 

has all its negative iterates outside Va = B(p, 35). The third and last step of the 
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proof of Lemma 6.1 also applies without change here: any small disk around x 

has a negative iterate which has internal radius larger than 25, and so cuts every 

strong-unstable leaf. This proves the first statement in the lemma. 

In particular, the unstable manifold of any periodic point is dense in T ~. More- 

over, by construction, every central leaf of f is dense in T 3. Therefore, to conclude 

that f is transitive, it suffices to show that the stable manifolds of the periodic 

points with stable index 2 are dense in some central leaf. Let F c be the central 

leaf in (B). The fact that  f0 is contracting on its stable leaves, together with C O_ 

closeness of f to f0 (by [HPS, Theorem 7.1] this yields C~ on central 

leaves) imply that every point in F c has a positive iterate in a neighbourhood 

of radius 505 << 1 of the three fixed saddle points contained in F ~. Then by 

the local description of the dynamics near the saddles, the point is in the stable 

manifold of one of the saddles. That  is, F c coincides with the union of the stable 

manifolds of the three fixed saddles it contains, and this completes the argument. 

I 

The presence of periodic points with complex contracting eigenvalues ensures 

that E c does not admit any invariant subbundle. 

R e m a r k  6.3: We could also start with an Anosov diffeomorphism f0 having, 

besides p, a periodic point q with complex contracting eigenvalues. In that case, 

to get the same conclusions as before one does not need the last condition in (B): 

it suffices to make p go through a pitchfork bifurcation, with no need to create 

new saddles with complex eigenvalues. 

In the next subsection we show that these diffeomorphisms satisfy (H3): the 

central direction is mostly contracting at Lebesgue almost every point (in each 

strong-unstable leaf, and in the whole manifold M). Then we can also obtain the 

following nice consequence of our results. 

Remark 6.4: We have shown that Theorem B may be applied to the maps we 

constructed above, and so they have a unique SRB measure #, whose basin con- 

tains Lebesgue almost all of M. If we start with a volume preserving Anosov 

diffeomorphism f0 then our construction can be carried out to give maps with 

the same properties as above which are also volume preserving (see, for instance, 

Section 6.4 where we do this in a different setting). Then, Lebesgue measure 

(volume) must be ergodic (Birkhoff averages are constant Lebesgue almost ev- 

erywhere), in fact it coincides with #. So, such maps are s t ab ly  e rg o d i c  with 

respect to Lebesgue measure. 
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6.3 CONTROL OF THE CENTRAL LYAPUNOV EXPONENTS. To complete the con- 

s t ruc t ion  of the previous examples, in Sections 6.1 and 6.2, we are left to explain 

why they are mostly contracting in the central direction. We begin with an 

abstract statement, that  we apply later to the two classes of examples. 
We suppose that A satisfies (H1), (H2), with dim E ~ = 1. Furthermore, there 

exists a domain V C M such that: 

(i) there exists E > 0, Co C (0, 1) such that, given any uu-segment 9' with 

length(3,) >_ E, we may partition f(~/) into segments -y(1),...,-),(k) such 

that  E < length(~(i)) < 2E for every i = 1 , . . . ,  k, and the total length of 

those ~,(i) that  intersect V is less than Co length(f(~/)); 

(ii) there exist A < 1 and/3 > 0 such that 

IIDFIE~II < (I + /3) for x E V and IIDFIE~II <_ A for x e M \ V, 

and, for some k sufficiently large, 

(3) .'~1 -- )~(1 +/3)k < 1. 

The precise condition k should satisfy is the following. Let E and Co be as in 

(i), let K > 0 be the distortion bound given by Lemma 3.3 with L -- 2EIIDflI, 

and c = KCO/(1 + (K  - 1)Co) < 1. We need 

( 1) (l § k)-~ < 1 ,  (4) Cl -- c 1 + 

which holds for any large k. 

PROPOSITION 6.5: Under these assumptions (H3) holds, in fact A~_(x) < 0 for 

Lebesgue almost every point in any uu-segment. 

Proof: The proof has two main steps. First we use (i) to show that  the orbit of 

Lebesgue almost every point in any uu-segment "y spends a positive fraction of 

the time outside V. Then condition (ii) implies the conclusion. 

Starting the first step, we note that it is no restriction to suppose that 

length(~,) >_ E. We decompose successive iterates 

f~ (~) - -  LJ ~ ( i l , . . . , i n )  
i l  , . . . ,i  i 

as follows. First we write f(7) = 7(1) U . . .  U ~,(k) as in (i). Then, supposing 

7 ( i l , . . . ,  i~-1) is defined, with length in between E and 2E, we use (i) once more 

to write 

f (~ / ( i l , . . . ,  i~-1)) = ? ( i l , - - - ,  i~-1,1) U . . .  U ~( i I , . - - ,  i,~-i, &') 
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( k ' d e p e n d s o n i l , . . . , i n _ l ) .  G ivenn  > r > 1 and 1_< tl < --- < t~ < n, we 
denote M ( Q , . . . , t ~ )  the following subset of % Firstly, M ( t l )  consists of those 

points x C V for which the segment V( i l , . . . ,  it1) that contains f t l  (x) intersects 

V. Observe that then f t ( M ( t l ) )  is a union of segments 7 ( i1 , . . . , i t )  for every 

t > tl. Next, we proceed by recurrence: M ( t l , . . .  ,t~_l,t~), r > 2, is defined as 

the set of points x E M ( t l , . . . ,  t~-l) such that f i r (x )  is in any of the segments 

7 ( i l , . . . ,  i t~_l , . . . ,  its) that intersects V. 

LEMMA 6.6: The Lebesgue measure of M( t l ,  . . . , t~) is bounded by c ~ length(@. 

Proof: The way we have defined these sets, f t ( M ( t l , . . . , t ~ _ l ) )  is a union of 

segments ~ '( i l , . . .  ,t) for every t > t~-i and, in particular, for t = tr - 1. We 

write ~ = ( i l , . . . ,  itr-1), for simplicity. For each one of these segments, (i) gives 

Leb ( f t ~ ( M ( t l , . . . ,  tr-1, tr)) f'l f("/(tr))) <_ CO length(f(t~))). 

Note that  the length of f (7(~) )  is bounded by 2EIIDfl I. So, using the distortion 

Lemma 3.3, 

Leb ( M ( t l , . . . ,  t~-l,  t~)C'l f-tr+l(,) ,(~))) <_ c length(f-t~+l(9,(er))). 

Adding over all the 3'(L~) contained in f t r - l ( M ( t l , . . . ,  t~-l)),  we get 

Leb ( M ( t l , . . .  , tr-1, t~)) <_ cLeb ( M ( t l , . . . ,  tr-1)). 

The lemma follows by recurrence. | 

COROLLARY 6.7: There exists B > O, a universal constant, such that for any 

n > 1 the Lebesgue measure of the subset Mn of points in x C "~ such that 

i f ( x )  E V for at least kn / ( k  + 1) values of j E {0, . . .  ,n  - 1} is bounded by 
B., .k,~/(k+l) length(~,). I o t ~  1 

Proof: This set is contained in the union of all M ( t l , . . .  ,t~) for all choices of 

n > r > k n / ( k  + 1) and t l , . . .  ,t~. So, its Lebesgue measure is bounded by 

~>kn/(k+l) 

We claim that, if r'_> k n / ( k  + 1), then 

() 1)r n _<B 1 +  l + k )  ~ , 
r 
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for some universal constant B. Summing over all such r we get the bound in the 

statement. 

The claim is a classical consequence of Stirling's formula. Indeed, it gives 

for some universal constant B. The last term can be rewritten 

Then it is enough to note that r >_ kn/ (k  + 1) is just the same as r >_ k(n - r). 
| 

It follows that An>l Uj>_~ Mj has zero measure. Note that the orbit of any 

point in the complement spends at least a fraction 1/(k + 1) of the time outside 

V. So the first step in the proof of Proposition 6.5 is complete. 

The second step is very short: 

iiDfnlE~ll <_ )`hi(k+1)(1 + ~)k~l(k+l) < )`~/(k+l) 

for any point x not in Ms. Recall, from (4), that ),1 < 1. | 

Proposition 6.5 enables us to check assumption (H3) whenever f is sufficiently 

contracting along the central direction outside V, not too expanding in the central 

direction inside V, if one has sufficiently large expansion in the strong-unstable 

direction, while keeping the distortion constants not too large. 

We apply it to the examples in Sections 6.1, 6.2, with V being the perturbation 

box V2. To have these conditions satisfied, we just suppose that for the initial 

Anosov diffeomorphism f0 any vector in the unstable subbundle is expanded 

by a factor 3 and any vector in the stable subbundle is contracted by a factor 

1/3. Then we deform f0 along a one-parameter family of diffeomorphisms fu, by 

isotopy inside V2, to make it go through either a Hopf bifurcation or a pitchfork 

bifurcation. The expansion in the unstable/strong-unstable subbundle remains 

large everywhere, and the same is true for the contraction in the stable/central 

subbundle restricted to the outside of V2. Then the distortion along strong- 

unstable leaves remains uniformly bounded in the whole family f~. Moreover, 

the deformation can be done in such a way that  the ft, be contracting along the 

central direction, all the way up to the bifurcation parameter ~0. 

Now we choose E > 0 not much smaller than the size of V2, so that the image 

of any uu-segment with length bigger than E has a positive fraction co (in length) 
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outside V2. Having fixed these constants, the distortion constant K may also be 

fixed, independent of the parameter #, as we already observed. So we may fix 

k > 0 large enough to satisfy (4), and then choose ~ sufficiently close to zero so 

that (3) also holds. Finally, for parameters just slightly beyond lt0, any expansion 

f ,  may display in the central direction must be smaller than 1 +/3. In this way 

we obtain the hypothesis of Proposition 6.5 (and, hence, its conclusion (H3)) for 

the systems in Section 6.1 and in Section 6.2. 

6 .4  DIFFEOMORPHISMS WITHOUT HYPERBOLIC BUNDLES. Finally, we prove 

Theorem C. We start with a linear Anosov diffeomorphism fo induced in T 4 by 

a linear map of ~a with eigenvalues 

0 < A1 < A2 < 1/3 < 1 < 3 < ~3 < ~4- 

Up to replacing it by some iterate, we may suppose that f0 has at least two fixed 

points Pl and P2- Let 2"~ and 2" 8 be the unstable and the stable foliations of 

f0. Let 0 < p << 1 be fixed. For i = 1,2 let D~(2p) and D~(2p) be balls of 

radius 2p around Pi in the unstable, respectively, in the stable leaf through Pi- 

Fix 0 < 5 << p small enough so that the distance along the leaves of $'~ of any 

two distinct points in D[(2p) U D~(2p) is larger than 1005, and similarly for the 

distance along the leaves of 9v~ ' of any two distinct points in D~(2p) U D~(2p). 

Then let 1/2 = B(pl,  5/2) U B(p2,5/2) and V3 = B(pl,  35) U B(p2,35). We also 

consider a sufficiently small constant c~ > 0, the precise condition is stated below. 

Now we consider the set ); of C 1 diffeomorphisms f of T 4 satisfying the 

following conditions: 

(1) f has a centre-unstable cone field C c~ and a centre-stable cone field C c8 

both with width bounded by a > 0 and containing, respectively, the un- 

stable subbundle and the stable subbundle of f0; 

(2) there exists a > 1 such that I det DfITDC~q > a for every disk D ~ tangent 

to the cone field C ~ and I det DflTD~81 < a -1 for every disk D ~8 tangent 

to the cone field CC8; 

(3) there exists ~ _< 1/3 so that we have IIDf(x)v~ll >_ .h-lllv~ll and 

I IDf- l (x)v~l l  >_ )~-lllv~ll for every x outside 1/2 and every v cu E CC'~(x), 

v c~ c C ~ ( z ) ;  

(4) f has some periodic saddle point q with stable index 2, whose stable man- 

ifold intersects every disk of radius 25 tangent to C ~=, and whose unstable 

manifold intersects every disk of radius 25 tangent to C c~. 
We suppose that a > 0 is sufficiently small so that (1), together with the way 

we have chosen 5, imply that every disk of radius 455 tangent to C ~', respectively 
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Ccs, intersects D~(p) U D~(p), respectively D[(p) U D~(p), in at most one point. 

LEMMA 6.8: Every diffeomorphism f C V is transitive. 

Proof." In view of assumption (4), it suffices to show that,  for an arbitrary open 

set U C T 4, some positive iterate contains a disk of radius 26 tangent to C r and 

some negative iterate contains a disk of radius 26 tangent to Ccs. Moreover, since 

our assumptions are symmetric under taking inverses, we only need to prove the 

first statement. 

CLAIM: Any open set U C T 4 contains some point x such that f'~(x) avoids V3 
for every sufficiently large n. 

The lemma is an easy consequence. Indeed, for such a point x we may take a disk 

Do C U around x and tangent to the centre-unstable cone field. Up to replacing 

U by some iterate, we may suppose that fn(x) ~ V3 for every n _> 0. If Do 

does not intersect V2 then we may use assumption (3) to conclude that f(Do) 
contains a disk D1 around f(x) whose radius is twice as large as the radius 

of Do. Repeating this, we construct a sequence of disks around the orbit of x 

D~, i = 0, 1 , . . . ,  tangent to the centre-unstable cone field, with D~ C f(Di-1) and 

whose radii increase geometrically. As long as the radius remains smaller than 25 

the disk can not intersect V2 and the procedure can be repeated. So, eventually 

the radius of some Dn must be larger than 2~, and the lemma follows. 

It remains to prove the claim. The argument is similar to those in Lemmas 6.1 

and 6.2, with the additional difficulty that  this time there may be no invariant 

foliations for the map f .  

It is convenient to consider a lift ] :  •4 _4 IR4 of f to the universal covering 

of the torus. We denote V2, V3 C ~4 the preimages of V2 and V3 under the 

covering map (note that  they have infinitely many connected components), and 

we use similar notations for lifts of other objects. Let 7r u be the projection along 

the stable foliation J~  from ]R 4 to some arbitrary unstable leaf of ]0 (which we 

identify with R2). Let /~u be an arbitrary leaf of the unstable foliation. For 

every n -'> 0, the image ]n (~u)  is a graph over ~2, in the sense that ~r u induces 

a diffeomorphism from ]n (~u)  onto R 2. This is just because ~u ~_~ fn(F~ ) is 

a proper embedding of IR 2 ~ F~ into I~ 4 whose tangent space, being contained 

in the lift of the centre-unstable cone field, avoids a cone around the vertical 

(stable) direction of ~l 4 = ~I 2 x R 2 with width uniformly bounded from zero. 

Let D be any disk contained in the intersection of D with some unstable leaf 

F~ of ]0. Assumption (2) implies that the volume of iterates ]'~(D) increases 

exponentially fast. Then, since these iterates are contained in graphs tangent to 
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~c , ,  the same is true about the diameter of in(D). So, some iterate F0 = ]-o (D) 

has diameter larger than 1005. Then F0 can not be contained in a ball inside 

]"(_fi'~) of radius 455 around any point of b~(p) u/)~(p). Since these balls are 

two-by-two disjoint, due to our choice of a, and Fo is connected, we conclude 

that  there exists some x0 E Fo such that the ball Bo of radius 355 around x0 

inside f~(F ~) does not intersect 113. On the other hand, F0 can not be contained 

in Bo either. So, there exists a compact connected set ~/0 C F0 disjoint from V3 

joining x0 to the boundary of B0. Then assumption (3) implies that the diameter 

of F1 = ](70) is larger than 

1 355 > 1005. 
A 

By recurrence, we obtain a sequence F~, n _> 0, of compact connected nonempty 

sets with Fn C ] (Fn-1  \ V3). Then ] - ~ ( F n  \ 113) is a decreasing sequence, and 

any point x C T 4 having a lift in the intersection of these compact sets satisfies 

the conclusion of the claim. 1 

We are left to construct diffeomorphisms such that  any other diffeomorphism 

in a C 1 neighbourhood satisfies conditions (1) through (4). We do this in such 

a way that  if the initial Anosov diffeomorphisms f0 preserves volume then the 

maps obtained are also volume preserving. Roughly, our construction goes as 

follows. We consider two different fixed (or periodic) points Pl and P2. In a 

neighbourhood of Pl contained in B(pl, 52) we modify the map along the stable 

direction (keeping the unstable direction essentially unchanged) in the same way 

as we did for the examples in Section 6.2, see Figure 1. Then we do the same in 

a neighbourhood of P2 contained in B(p2, 52), exchanging the roles of the stable 

and the unstable direction. Let us describe this procedure in more detail. 

As a first step, we consider two models of volume preserving vector fields in the 

unit 2-dimensional disk D 2, which are depicted in Figure 2. Both are zero in a 

neighbourhood of the boundary of the D 2. The first model, X, has a singularity 

of center type at the origin. The second model, Y, has a hyperbolic saddle at 

the origin. It may be obtained, for instance, as the Hamiltonian vector field of 

some smooth function, which is constant at the boundary and has a saddle type 

critical point at the origin. 

Next, we construct vector fields )~ and Y in D 2 • D 2, given by 

2 ( x , y )  = (r  ? ( x , y )  = (r  

where r D 2 -4 [0,1] is a smooth function such that r -- 1, and r -- 0 

on a neighbourhood of the boundary of D 2. Note that )( ,  ]P are still volume 
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preserving. Moreover, Y has a singularity at the origin with a strong-unstable, 

a strong-stable, and two central directions. 

@ @ 
Figure 2. 

As already mentioned, we obtain our examples by modifying the initial linear 

Anosov diffeomorphism fo in neighbourhoods of two different fixed (or periodic) 

points Pl and P2. We describe the modification in the neighbourhood of Pl; 

the construction for P2 is just the same, with stable and unstable directions 

interchanged. It is useful to consider that this takes place in three stages. 

First, we fix a linear chart ~1:D2 x D 2 --+ M mapping 0 to Pl, the horizontal 

leaves D 2 x {y} into the stable leaves of fo, and the vertical leaves {x} x D 2 into 

the unstable leaves of fo. We also suppose that the local unstable manifold of 

the saddle point of Y is mapped parallel to the eigenspace corresponding to the 

weakest contracting eigenvalue A2 of fo. 

We consider the one-parameter family of diffeomorphisms ft = (~ .Y) t  o fo 
obtained by composing fo with the flow of the push-forward of Y. The point 

pl is fixed for every ft; on the other hand, the weakest contracting eigenvalue of 

Dft(p) increases as t increases from zero. Eventually, for some t = to (depending 

only on A2 and the expanding eigenvalue of Y at the origin) this eigenvalue 

becomes equal to 1, then the stable index of Pl changes to 1. In the process new 

fixed saddles, with stable index 2, are created in the neighbourhood of Pl. 

As a second stage, we consider go = ft~ for some tl slightly larger than to, and 

let ql be one of the new fixed saddle points with index 2. We modify go in a 

neighbourhood of ql disjoint from Pl, in the same way as we did before for f close 

to Pl, except that  this time we use )(  instead of Y. We obtain a one-parameter 

family of diffeomorphisms gs such that ql is a fixed point of every g~, with the 

contracting eigenvalues of Dgs(ql) becoming equal, and then complex conjugate, 

as s becomes larger than some So. 

We choose sl slightly larger than So, and let h = g~l. The reason why we 

are not done yet is that  h may not preserve a thin centre-unstable cone field as 

in condition (1). We fix a as in (1). Observe that  all the modifications we did 
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took place in the direction of the stable foliation of fo. So, on the one hand, this 

foliation is still invariant (but not any more contracting) for h; on the other hand, 

vectors in unstable subbundle of f0 are still expanded by Dh (but the subbundle 

itself is no longer invariant). As a consequence, any sufficiently thin cone field 

around the stable foliation of f0 is a centre-stable cone field for h. 

We choose such a cone field, then its complement C is a strong-unstable cone 

field (but it may be very wide). Now we conjugate h in T(D 2 x D 2) by some 

linear map (x,y)  ~ (rx, y), where (x,y)  are coordinates in D 2 x D 2, and r > 0 

(the conjugated map extends correctly because h = f0 is a linear map of T 4 in a 

neighbourhood of the image of the local chart). Taking r > 0 sufficiently small 

we have that the image C c" of C under this conjugacy has width smaller than 

a, and so it is a thin centre-unstable cone field for the new map f .  Moreover, 

since the stable foliation of f0 is still invariant under f ,  and we have once more 

preserved the expansion along the unstable bundle of f0, any cone field with 

width less than a centered in the stable subbundle of fo as centre-stable cone 

field of f .  

Up to dual modifications, carried out independently in a neighbourhood of P2, 

this f is the map we were looking for: conditions (1) through (4) stated at the 

beginning of this section hold in a C 1 neighbourhood of f .  Indeed (1), (2), (3) 

follow from the construction, and for (4) it suffices to choose the chart ~(D 2 x D 2) 

sufficiently small that we keep unchanged arbitrarily large compact disks in the 

stable and in the unstable manifolds of the periodic point q. 

We close with the following 

Conjecture: The class of volume-preserving examples without uniformly hyper- 

bolic invariant subbundles that we construct in this section contains Cl-stably 

ergodic diffeomorphisms (every C 1 close map that preserves Leb~sgue measure 

is ergodic with respect to it). 
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