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ABSTRACT

We consider partially hyperbolic diffeomorphisms preserving a splitting
of the tangent bundle into a strong-unstable subbundle E** (uniformly
expanding) and a subbundle E°, dominated by E**.

We prove that if the central direction E€ is mostly contracting for the
diffeomorphism (negative Lyapunov exponents), then the ergodic Gibbs
u-states are the Sinai-Ruelle-Bowen measures, there are finitely many of
them, and their basins cover a full measure subset. If the strong-unstable
leaves are dense, there is a unique Sinai-Ruelle-Bowen measure.

We describe some applications of these results, and we also introduce a
construction of robustly transitive diffeomorphisms in dimension larger
than three, having no uniformly hyperbolic (neither contracting nor ex-
panding) invariant subbundles.
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1. Introduction

Uniformly hyperbolic systems [Sm] may present very rich and complicated dy-
namical features: even a small modification of the initial condition often leads to
rather different behaviour of the orbit over long periods of time. This means that
the position of individual points after a large number of iterations is essentially
unpredictable. Because of this, such systems are sometimes considered “chaotic”.

Nevertheless, hyperbolic systems have very well-defined statistical properties.
[Si], [Ru], [BoRu| showed that time-averages of any continuous function along
almost every orbit converge to a limit as time goes to infinity. More precisely, if
f: M — M is a hyperbolic diffeomorphism (similar results hold for flows) then
there exist finitely many f-invariant probability measures g1, ..., ¢ such that

for any continuous function ¢: M — R and for Lebesgue almost every point
zE€M

I

(1) GJm ]go o(f(2)) = /sodui

for some i. We call basin of y; the set B(u;) of points z € M for which (1)
holds. More generally, an invariant probability measure of a general diffeomor-
phism is called an SRB (for Sinai-Ruelle-Bowen) measure if its basin B(x) has
positive Lebesgue measure. For hyperbolic diffeomorphisms f, the properties of
the systems (f, ;) are now well-understood. In particular, they are exponentially
mixing (exponential decay of correlation functions) {Bow], and stochastically sta-
ble [Kil, [Yol].

One would like to have such a satisfactory understanding of the dynamics
for very general systems. On the other hand, several robust models that do
not fit in the hyperbolic theory have been described since the sixties: Lorenz-
like attractors [Lo], [ABS], [GuWi], Hénon-like attractors [He], [BeCa), partially
hyperbolic diffeomorphisms [AbSm], [Sh1], [Mal], [BoDi]. An important goal in
Dynamics in recent years has been to enlarge the framework of hyperbolicity,
in order to encompass such models in a global theory of “chaotic” dynamical
systeins.

A program towards such a global theory has been proposed a few years ago by
J. Palis, see [Pa]. At its core is his conjecture that every dynamical system can
be approximated by another having only finitely many attractors, all of which
have good statistical properties (SRB measures, statistical stability).

The ergodic properties of these systems have been studied to some extent: see
e.g. [Sp], [CoTy], [Pe2], [Sa] for the Lorenz-like attractors, and [BeCal, [BeYol],
[BeYo2], [BeVil], [BeVi2] for the Hénon-like attractors. Partially hyperbolic sys-
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tems are a rather large class and exhibit a very broad spectrum of dynamical
behaviour. See, for instance, the example in [Ka] of partially hyperbolic diffeo-
morphisms with intertwined basins of attraction. Despite substantial progress,
e.g. by [Al], [BrPe], [Car], [PeSi], [GPS], [Yo2], their ergodic properties are still
far from being completely understood.

In particular, it is not known in which generality such systems admit SRB
measures, and this problem is a main motivation for the present work. We obtain
results of existence and finitude of SRB measures, that we state in more detail
below. These may be thought of as a positive step in Palis’ program mentioned
above.

1.2 PARTIALLY HYPERBOLIC DIFFEOMORPHISMS. Let M be a compact rieman-
nian manifold and f be a C! diffeomorphism on M. Here we call f partially
hyperbolic if there exists a continuous D f-invariant splitting

(2) TM = E*™ @ E°
of the tangent bundle of M, such that
I(DFIE*)~H <1 and |IDFIEC|I(DFIE™)7 | < 1.

In other words, Df|E** is uniformly expanding and dominates Df|E® : Df
expands any vector in E° less than it expands any vector in E**. (The usual
definition of partial hyperbolicity is equivalent to either f or f~! satisfying this
condition.) More generally, we consider diffeomorphisms with partially hyper-
bolic attractors, that is, compact subsets A of M such that

A=)
n>0
for some open neighbourhood U of A with closure f(U) C U, and there exists a
splitting TaM = E** @ E€ of the restriction of the tangent bundle to A, with
the same properties as before.

Partially hyperbolic systems were used by [Shl] to give the first examples of
diffeomorphisms (in the 4-torus 7%) which are robustly transitive and, yet, are
not globally hyperbolic (Anosov). One calls a diffeomorphism f C' robustly
transitive if any diffeomorphism ¢ in a C! neighbourhood of f has orbits dense
in the ambient manifold. Likewise, we say that f has a C! robustly transitive
attractor A if for any diffeomorphism g C?! close to f the maximal invariant set

Alg) =) a"(U)

n>0
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contains dense orbits. A different construction, that also produces partially hy-
perbolic maps, enabled [Mal] to reduce the minimal dimension of these examples:
there are C'! robustly transitive diffeomorphisms in 7° which are not Anosov.
All these examples have a strong form of partial hyperbolicity: there exists a
continuous splitting into three nontrivial (positive dimension) subbundles

TM = E*™ @ E°® E**

where E*®¢ is uniformly contracting. On the other hand, an important restriction
is that the central subbundle E€ was always 1-dimensional. This was removed
by [BoDi], who constructed the first examples of C! robustly transitive partially
hyperbolic (three nontrivial subbundles) diffeomorphisms with arbitrary central
dimension.

More recently, [DPU] showed that partial hyperbolicity is, in fact, intimately
related to robust transitiveness, at least in dimension three: a C! robustly tran-
sitive diffeomorphism of a 3-manifold must be partially hyperbolic. On the
other hand, [Bon] gives examples of C! robustly transitive diffeomorphisms in
3-dimensional manifolds such that £°° is trivial.

Here we produce further examples of this kind, and we also show that the
results of [DPU] do not extend directly to higher dimensions: we obtain in T,
cf. Theorem C, the first examples of robustly transitive diffeomorphisms that
do not admit any invariant hyperbolic subbundles. On the other hand, these
maps do have a weaker hyperbolicity property, namely they admit a dominated
splitting. In fact, [BDP] announce that this is always the case for a robustly
transitive diffeomorphism, in any dimension.

Another result that concerns us directly is the construction by [PeSi] of Gibbs
u-states for partially hyperbolic attractors of diffeomorphisms. By Gibbs u-
states we mean here invariant probability measures whose conditional measures
[Ro] along the leaves of the strong-unstable foliation F“* (the unique foliation
tangent to the subbundle E**) are absolutely continuous with respect to the
corresponding Lebesgue measure.

[Car] used their construction to exhibit SRB measures for partially hyperbolic
attractors of diffeomorphisms derived from Anosov diffeomorphisms through bi-
furcation of a periodic orbit. The present work is partially motivated by this
paper, whose results we generalize.

1.2 STATEMENT OF MAIN RESULTS. Our first main result states that if the
central direction is mostly contracting for the diffeomorphism, then ergodic Gibbs
u-states are SRB measures, and there are finitely many of them. Let us state
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this in a precise form. We take f: M — M to be a C? diffeomorphism satisfying

conditions (H1), (H2) below.

(H1) f has an attractor (not necessarily transitive), that is, a compact set A C M
which is invariant under f and is the maximal invariant set

A=) )
n>0
in some open neighbourhood U of A with closure f(U) C U.
For instance, we may take A to be the whole manifold M. In general, we call
basin of A the set
B(A) = | F(U)
n>0
of points whose future orbits accumulate on A.
(H2) There is a continuous decomposition TAM = E** @ E° of the tangent
bundle to M over A and there exists A < 1 satisfying
(1) the decomposition is invariant under D f;
(i) (D | B2 < A and [DF | EZIN(DS | E2)1 < A for all
z €A
The subbundles E** and E¢ in (H2) are necessarily Holder continuous, and
the strong-unstable subbundle E** is uniquely integrable, see [BrPe, §2]. We
denote by F“* the integral foliation, defined over the compact set A. Its leaves
are C? immersed submanifolds of M, with uniformly bounded curvature, see
[Sh2, p. 79], and they admit the following dynamical characterization:

F¥z) =F*"(y) < d(f (=), "(y)) < A"d(z,y) for every n > 1.
Given any point z € A, we denote

X (z) = limsup ~ log | Df™|EZ||.
n—a+o0 T
In other words, A5 is the largest Lyapunov exponent of f along the central
direction, wherever this is defined. By Oseledets theorem, see [Ma2, IV.10],
Lyapunov exponents are defined almost everywhere, with respect to any invariant
measure.
Then we state

THEOREM A: Suppose that the diffeomorphism f satisfies (H1), (H2), and

(H3) for every disk D** contained in a leaf of F** we have XS (z) < 0 for a
positive Lebesgue measure subset of points x € D"*.
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Then f has finitely many ergodic Gibbs u-states pa,...,u,. They are SRB
measures for f, and the union of their basins B(u;) is a full Lebesgue measure
subset of the basin B(A) of A.

We also prove the following statement of uniqueness of SRB measures.

THEOREM B: Suppose that the diffeomorphism f satisfies (H1), (H2), and
(H4) all the leaves of the foliation F** are dense in A;

(H5) there exists a disk D** contained in some leaf of F** such that XS (z) < 0
for a positive Lebesgue measure subset of points © € D"".

Then f has a unique Gibbs u-state u, and it is ergodic. The support of i coincides
with A. Moreover, the basin B(p) is a full Lebesgue measure subset of B(A), in
particular, p is the unique SRB measure of f in B(A).

Theorem A is proved in Sections 2 through 4. In Section 5, we explain how the
arguments can be adapted to give Theorem B. (H1), (H2) are standing hypotheses
throughout these sections, except if otherwise stated.

In Section 6 we describe a few examples related to these theorems. First of all,
we revisit the construction of [Car]. Next, by modifying a beautiful construction
of [Mal], we obtain the examples of robustly transitive diffeomorphisms without
uniformly contracting subbundle E** we mentioned before. These diffeomor-
phisms satisfy (H4), and the central subbundle E° is mostly contracting in the
sense of (H3) (which is stronger than (H5) ), so Theorem B applies to them.

By further modifying our construction, we are able to give the first examples
of robustly transitive diffeomorphisms, in four dimensions, having no invariant
hyperbolic subbundle.

THEOREM C: There exists an open subset U of Diffl(T4) such that any f € U
is transitive and admits a continuous invariant dominated splitting into two 2-
dimensional subbundles

TM = E* @ E™, |DfIE|I(DfIE*)7<A<1

such that D f|E°® is uniformly volume contracting but not uniformly contracting,
D f|E®* is uniformly volume expanding but not uniformly expanding, and neither
of them admits an invariant subbundle. Moreover, U contains an open subset of
the space of C! volume preserving diffeomorphisms.

A natural problem is to study the properties of SRB measures as we construct
in Theorems A and B. We mention two very important recent developments.
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[Cas] introduces a method of ‘backward inducing’ and applies it to prove expo-
nential decay of correlations and the central limit theorem (in the Banach space
of Holder functions) for a class of attractors including those in [Car]. Exponen-
tial decay and the central limit theorem are also obtained by [Do], through a
different approach, for another large class of partially hyperbolic systems with
mostly contracting central direction (‘average contraction property’).

Another question raised by our results concerns what happens when the central
subbundle is mostly expanding (in this case it is natural to consider a splitting
E** @ E° instead). This is the subject of an ongoing project, whose results will
appear in [ABV]. At present, the general answer is less complete than what we ob-
tain here for the contracting case, but SRB measures can already be constructed
in fair generality, specially when E° is 1-dimensional.

The examples of persistently transitive diffeomorphisms without uniformly hy-
perbolic subbundles given by our Theorem C present a new challenge. We expect
ideas from [ABV] to be useful, specially when E°® is mostly contracting and E*
is mostly expanding.

2. Pesin theory and Gibbs u-states

The following proposition asserts that points z with () < 0 have a stable
manifold, in the sense of Pesin’s theory, transverse to the strong-unstable leaf
passing through x.

We call uu-disk the image of any embedding into a strong-unstable leaf of
a euclidean disk with the same dimension as the leaf. The uu-ball of radius r
around a point z is the set of points'in the strong-unstable leaf of z, and whose
distance to z, with respect to the riemannian metric induced on the leaf, is at
most 7.

PROPOSITION 2.1: Let XS (x) < 0 for every point z in a positive Lebesgue mea-
sure subset Ag of some uu-disk D**. Then
1. For every point x € A there exists a C* embedded disk W () tangent to
ES at x, and such that the diameter of f*(W} .(x)) converges exponentially
fast to zero as n — +00.
2. The C* disk W

() depends in a measurable way on the point x, and the

“foliation” {W} (x) : € Ay} is absolutely continuous.

The proposition follows from standard arguments in Pesin’s theory, see [Pel],
[PuSh]. We just recall the terminology.

Given € > 0 we denote D“%(¢) the tubular neighbourhood of radius ¢ > 0
around D**, defined as the image under the exponential map of M of all the
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vectors of norm less than € > 0 in the orthogonal complement of E**, for all
z € D**. If ¢ > 0 is small enough then D*%(g) is diffeomorphic to a cylinder,
and it comes equipped with a canonical projection 7 onto D**, which is a C!
map. We say that a C! disk v crosses D“*(g) if it is contained in D**(¢) and
7 induces a diffeomorphism of -y onto D**.

Absolute continuity means that there exists a sequence (K,),, of compact sub-
sets of Ag with Leb(Ag\K,,) converging to zero as n — 0o, and there exist maps

K,>z— W (z)

associating to every point z in K, an embedded C" disk W*(x) and satisfying:

(a) Wg.(x) depends continuously on the point z in K,. In particular, there

exists a uniform lower bound for the size of W} (z) in K,,; in more precise

(z) under the

exponential exp, of M at z contains the graph of a C' map defined from
the 4, neighbourhood of 0 in Ef to Ex*.

(b) Given any 0 < € < 8,/2 and any C? disk +y crossing the tubular neighbour-

terms, there exists 4, > 0 such that the preimage of W3

loc

hood D™¥(¢) the holonomy map

b U (00 > K,
zeK,
defined by projection along the leaves of the foliation {W; (z) : z € Ky}
is absolutely continuous

Leb(p,(A4)) = / Jpy d(Leb) for every Borel subset A
A

with jacobian Jp, bounded away from zero and infinity by constants that
depend only on the compact set K,, and the minimum angle between v and
the local stable manifolds W (z).

COROLLARY 2.2: Let Ay be as in Proposition 2.1. Then there exist € > 0
and n > 0 such any uu-disk + that crosses the tubular neighbourhood D**(¢)
intersects the upion of all W} (z),x € Ao in a subset whose Lebesgue measure
is larger than nLeb(y).

Proof: This follows easily from Proposition 2.1. Fix n > 1 such that K, has
positive Lebesgue measure, and then fix 0 < £ < §,/2. By continuity of the
strong-unstable subbundle E** and of the local stable manifolds through points
of K,,, the angle between any uu-disk and those local stable manifolds is uniformly
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bounded away from zero (up to reducing € > 0, if necessary). The conclusion
follows. |

Next we prove some simple facts about Gibbs u-states. By such we mean
invariant probability measures whose disintegration along the leaves of the strong-
unstable foliation yields measures which are absolutely continuous with respect
to Lebesgue measure on the leaves. More precisely, we use the following property
which is part of the definition proposed by [PeSi].

Let £ be the strong-unstable leaf through an arbitrary point z € A. Given r >
0and W a C! (open) disk centered at = and transverse to £, denote Il(z, W, r) the
union of all (open) uu-balls y(z,7) of radius r centered in the points z € WNA. By
definition, the restriction of y to this foliated box II{x, W, r) has a disintegration
(k£2)zewna with respect to the foliation {y(z,7) : z € W N A}, such that every
p- is absolutely continuous with respect to Lebesgue measure m.(,,») on ¥(z,7).
Moreover,

du.(y) = p(y, 2) dmy ;0

for some positive function p which is bounded away from zero and infinity, in
terms only of r and W. We shall denote i the quotient measure induced by u
in the space of leaves ¥(z,7). This quotient space can be canonically identified
with the intersection of A with the disk W, and we do so.

Theorem 4 of [PeSi] implies that partially hyperbolic attractors always support
Gibbs u-states:

LeEMMA 2.3 [PeSi]: Let o be an arbitrary uu-disk and m, be the normalized re-
striction of Lebesgue measure in 0. Then any accumulation point of the averaged
push-forwards limn~! Z;:ol fi(m,) is a Gibbs u-state.

The following lemma will be useful in Section 5.

LEMMA 2.4: The support of any Gibbs u-state u of f on A Is saturated by F¥%,
that is, it consists of entire leaves of F"“*.

Proof: Suppose otherwise, that is, there is some strong-unstable leaf £ that
intersects A = supp g and is not entirely inside A. Take z a point in the boundary
of AN £ inside £ (recall that £ is an immersed submanifold of M, at this point
we endow it with the metric induced by the immersion). Fix any r and W and
consider the corresponding foliated box II(z, W,r). Our choice of z ensures that
there exists yo € y(z,7)NA, and then there exists some small open neighbourhood
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V of 4o in A, contained in II(z, W,r) and such that u(V) = 0. Now

(V) = / 12 (V N1z )) di(z) = / ( /V ) dmy(z,)(y)) di(2).

Recall that ji is the quotient measure of i in the space of leaves v(z,7). Since p
is strictly positive, the fact that (V) = 0 must come from some neighbourhood
of z in AN W having zero ji-measure. More precisely,

f(Wo) =0, where Wy ={z€ ANW:V N~(z,r) #£0}.

As a consequence, the neighbourhood IT(z, Wy, r) of z in A has zero pu-measure,
which contradicts the fact that z is in the support of u. ]

The following remark explains the relation between Gibbs u-states and SRB
measures when the central direction is mostly contracting.

Remark 2.5: Let u be an ergodic Gibbs u-state and D** be a uu-disk contained
in the support of p. Suppose there exists a positive Lebesgue measure subset
Ap C D" such that AS (z) < 0 for every £ € Ag. Then p is an SRB measure.
Indeed, cf. Corollary 2.2, the union of the local stable manifolds W (z) through
points of x € Ay intersects any uu-disk close enough to D¥* in a positive Lebesgue
measure subset. Since p is an ergodic Gibbs u-state, we may take such a disk
so that a full Lebesgue measure subset is contained in the basin of 1. Then,
by absolute continuity, local stable manifolds W} () passing through points of
B() form a positive Lebesgue measure subset of M which, clearly, is contained
in the basin of y.

2.1 ACCESSIBILITY CLASSES AND CONSEQUENCES OF (H3). In this subsection
we assume (H3) in addition to (H1), (H2).

Let R be the set of regular points of f, defined as the set of all points z € A
satisfying the following pair of conditions:

1. given any continuous function ¢ : M — R, both limits (Birkhoff averages)

1 n—1 ] 1 n—1 )
im — J im = J
lm — Z;] ¢(f!(z)) and  lim -~ Z(:) o(f ()
= ]___

exist, and coincide;
2. the largest Lyapunov exponent of f at z along the central direction is well-

defined and negative:

1 nIch — 13 1 n|pcy—1

m —log||Df*|Ez|| = lim —- log{|(Df™EZ) ™"l < 0.

li
n—+o0
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A strong-unstable leaf is regular if Lebesgue almost every point in it is regular.
We denote S the set of all regular points contained in regular leaves. By Propo-
sition 2.1, every point z € S has a local stable manifold W} (z) tangent to E
at z.

In what follows we take 4 to be a Gibbs u-state, and suppose that (H3) holds.

LEMMA 2.6: The set S has full y-measure, for any Gibbs u-state p.

Proof: For any foliated box II(z, W, r), let (11,), be the disintegration of y along
strong-unstable plaques v(z,7), and [i be the quotient measure. According to the
ergodic theorem, condition (1) holds for a full y-measure subset of A. Oseledets
theorem ensures that the limits in (2) exist and are equal u-almost everywhere.
So, except for the inequality in (2), all the conditions in the definition of regular
point are true for u,-almost every point in y(z,7), and ji-almost every z. Now
let z be such that the largest central Lyapunov exponent is well-defined for p,-
almost every point in (z,r). Condition (H3) implies that A5 < 0 on a positive
1-measure subset. Since the lim,_,_, in (2) is constant over y(z,r) (because
this is contained in an unstable manifold), it follows the largest central Lyapunov
exponent has to be negative p.-almost everywhere in v(z, r). So the set of regular
points has full p-measure on the box, in fact, fi-almost every «(z,r) intersects
R in a full p,-measure subset. The lemma follows by considering a (finite or
countable) covering of A by foliated boxes. 1

Now we say that x, 2z € S belong in a same accessibility class if there are n >
1 and points £ = yo,%1,-..,Yn = 2 all in S and such that for everyi =1,...,n
at least on of the points y;,y;_1 belongs either in the local stable manifold W}
or in the strong-unstable leaf F** of the other:

either y; € W (1) UF“*(yi-1) or  yi—1 € Wigc(ys) UF“(ys).

Clearly, this defines an equivalence relation. Moreover, if two points belong in
a same equivalence class then they have the same Birkhoff averages, for every
continuous function ¢.

LEMMA 2.7: Accessibility classes are open subsets of S.

Proof: For any given z € S and 7 be a small neighbourhood of z in F*¥(z).
Let € > 0 be as given by Corollary 2.2. Given any point y € S close enough to
, the strong-unstable leaf of y contains a segment <y, that crosses the tubular
neighbourhood y(¢). Then 7, intersects the union of local stable manifolds of
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points in 7 in a positive Lebesgue measure subset A,. In fact, almost every
point in Ay is in the local stable manifold of a point in SN+, since S has full
Lebesgue measure in vy, and the stable foliation is absolutely continuous. Since S
also has full Lebesgue measure in v,, we conclude that a full Lebesgue measure
subset of Ay consists of points in S. By construction such points are in the
same accessibility class as z and as y. This proves that every y € S in an open
neighbourhood of z belongs in a same accessibility class as z. |

COROLLARY 2.8: The ergodic components of a Gibbs u-state y are normalized
restrictions of u to accessibility classes, and so they are also Gibbs u-states.

Proof: Since accessibility classes are open in S there are at most countably many
of them. Then, the classes which have zero measure cover only a zero measure
subset of S, and so they can be discarded. Recall also that S has full y-measure.
Since Birkhoff averages are constant on accessibility classes, for any class A with
1(A) > 0 the probability g4 given by pa(B) = u(A N B)/u(A) is ergodic. So
the ergodic components of z are precisely these normalized restrictions g4, and
so they are absolutely continuous along strong-unstable leaves. |

LeMMA 2.9: Under condition (H3), there are finitely many accessibility classes,
and so f has only finitely many ergodic Gibbs u-states. Moreover, their supports
are disjoint.

Proof: Let C,, n > 1 be accessibility classes. Choose 7, a ball with radius
uniformly bounded from below in a regular strong-unstable leaf, such that SN,
is nonempty and contained in C,. Taking a subsequence, we may suppose that
~v» converges to some uu-disk D**. By (H3) and Proposition 2.1 there exists
a positive Lebesgue measure subset Ay of D** such that each point z in Ag
has a Pesin local stable manifold. Moreover, restricting Ag if necessary, we may
suppose that W?

2 .(x) contains a ball of uniform radius § around z (the distance

from z to the boundary of W (z) is larger than 4), for every x in Ag. Then
these local stable manifolds intersect 7, in a positive Lebesgue measure subset,
for every large value of n. This implies that the points of S N+, are in a same
accessibility class for every large n. So there are only finitely many distinct classes
C,. The second part of the lemma is now an easy consequence of Corollary 2.8.
These arguments also prove that the supports of different ergodic Gibbs u-states
are disjoint. ]

Cf. Remark 2.5, under (H3) every ergodic Gibbs u-state is an SRB measure.
Therefore, to prove Theorem A it is enough to show that the basins of these



Vol. 115, 2000 SRB MEASURES 169

ergodic Gibbs u-states cover a full Lebesgue measure subset of the basin of at-
traction. This will be given by Proposition 4.2.

We note that in the present section, as well as in the next one, we do not need
the full strength of the definition of attractor in (H1).

Remark 2.10:  For the construction of Gibbs u-states by [PeSi] it is sufficient that
A be a compact f-invariant set, and that there exist a strong-unstable foliation
(uniformly contracted by negative iterates) whose leaves are contained in A and
whose tangent bundle is Holder continuous, cf. [PeSi, p. 421]. These assumptions,
weaker than (H1)+(H2), together with (H3), are also sufficient for all our results
in the present Section 2 {and in Section 3). So, they suffice to ensure that there
exist only finitely many Gibbs u-states, and they are SRB measures. That is, A
is a measure-theoretical attractor, even if it may not be a topological attractor.
This is precisely the case in the examples of [Ka].

3. Distortion bounds

In this section we prove certain bounds on the distortion of iterates of f restricted
to strong-unstable leaves or, more generally, to submanifolds tangent to a strong-
unstable cone field C** in a neighbourhood of the attractor. First, a few words
of explanation.

We adopt the following conventions. A continuous cone field C = (C;) defined
on a subset V C M is called centre-unstable if it is forward invariant:

Df(z)-Cp CCj(zy foreveryzeVnjf (V).

We call it strong-unstable if it is strictly invariant, D f(z) - C, is contained in
interior(C'(,)) U{0}, and every vector in it is uniformly expanded: there is o > 1
so that

|Df(z)-v|| > ollv|| for every v € Cy and z € V N f~1(V).

Finally, a continuous cone field is centre-stable, respectively, strong-stable for
f if it is centre-unstable, respectively, strong~unstable for f~1.

Hypothesis (H2) implies the existence of a strong-unstable cone field C** de-
fined on a neighbourhood V' C U of A. For points in £ € A we may take C¥*
to consist of the tangent vectors whose angle to the direction of E** is less than
some small constant £ > 0. This defines a continuous cone field on A which is
sent strictly inside itself by Df, and whose vectors are uniformly expanded by
Df. Then it suffices to consider an arbitrary continuous extension of this cone
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field to a small neighbourhood V' of the attractor, which we also denote C**. By
(H1), V may be taken invariant under f in the sense that f(V) C V. We say
that a disk v C V is tangent to C** if the tangent space to v at every point x
is contained in C¥*.

For a point z € A we denote (J**f)(z) the absolute value of the determinant

of Df|E¥™: EX* — E’f‘&), and call it the strong-unstable jacobian of f at z.

LEMMA 3.1: Given L > 0 there exists L1 > 0 such that, given any C? disk

~ C V tangent to the strong-unstable cone field with curvature less than L, then
every positive iterate f(v) has curvature bounded by L.

Proof: We start with some preliminary remarks. Clearly, the content of the
claim does not depend on the choice of a smooth riemannian metric in the neigh-
bourhood V of A. For convenience, we consider a metric in which the central
bundle and the strong-unstable bundle be nearly orthogonal. More precisely, we
choose the metric in such a way that, for some uniform constant A\; < 1,

(i) ||Df - v| > A7|v|| for every v in a strong-unstable cone;

(ii) (|Df-wl|l/llw]) < A ({|Df-vll/||v]]) for every v in the strong-unstable cone

and w orthogonal to v.

Strictly speaking, this requires that the width of the strong-unstable cone field
be small enough, but this can always be achieved by replacing V' and C** by
iterates fV(V) and DfN - C**, for fixed large N.

For the sake of clearness we treat first the case when E** has dimension 1. Let
o be the parametrization by arc-length of f7(v), j > 1. Then the curvature of
f?(v) may be written

w7 ) = e — g

Given two vectors u, v in a d-dimensional euclidean space, we use det(u,v) to
denote the (d—2)-linear form associating to each (w1, ..., w,_2) the determinant
of (u,v,w,...,wn_2). Note that det(u,v) depends bilinearly on u and v. Now,
0;+1 = f(o;) is a parametrization of f7*!(y) and

;21 =Df-6; and ;41 =Df-5;+ D*f-(5;,6;).

Hence, by bilinearity,

|det(Df - 65, Df - 6;)| | |det(Df - 65, D*f - (65,63)|

o
k(f7 (7)) < D7 - 6;1° IDf - 53
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Since ||d;|| = 1, and vectors in the strong-unstable cone are expanded by Df,
the second term is bounded by

DA
|Df -6

Similarly, the first term is bounded by

IDf - 5
IDf - o512

In this inequality we use properties (i) and (ii) of the riemannian metric, together

D 65 < < ID*I.

< X651 = A3 k(£ (7).

with the remark that &; is orthogonal to ;. Altogether, we get that
K(f7H () S ATR(F () + |1 D2
for every j. By recurrence, we find that

D2

[F2il

K () < AR + o

for every n > 1, and this completes the proof with L; = L + ||D?f]|/(1 — \?).

The general case dim E** > 1 follows from the same arguments, as follows!.
Given a point p; ¢ f7*1(7) and a tangent vector vy to fi*!(v) at p1, let pand v
be their preimages under f and D f(p), respectively. Choose a curve o C f7(7)
tangent to v at p, and whose second derivative is orthogonal at p to the disk
f3(v). By recurrence, we may suppose that the curvature of o at p is bounded
by some large constant L;. Then the same calculation as before shows that
the curvature of oy = f(o) at p; is also bounded by L;, if this has been fixed
sufficiently large. The same remains all the more true for the component of the
curvature normal to the f7+1(). This means that the second fundamental form
of fi+1(«) is uniformly bounded. As a consequence, the curvature of the fi+1(vy)
is uniformly bounded over all j > 0. 1

Remark 3.2: 1t also follows that

L I1D%]

KO <1+ T

for every sufficiently large n > 1.

1 We are grateful to H. Rosenberg for pointing out this argument to us.
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LEMMA 3.3: Given L > 0 there exists K > 0 such that given any C? disky C V
tangent to the strong-unstable cone field and with curvature less than L, and
given any n > 1 such that diam(f"(v)) < 2L, then

1 _ (f")(2)
=<7 <K
(Jy ™))
for every pair of points z,y € -y, where J,, f(z) = |det D f|T,v| is the jacobian of
f along .

Proof: By Lemma 3.1 the curvature the iterates f7(y), 7 > 1, of 7 is uniformly
bounded. So the jacobian Jy;(,y is C-Lipschitz continuous for some uniform
constant C > 0. On the other hand, the fact that f is uniformly expanding along
any direction contained in C** implies that

d(f7(2), f(y)) < X"3d(f(2), £ () < A"I2L

for every xz,y as in the statement, and every j = 0,1,...,n. Using the relation
(Ju fr)(x) n-1 ‘
log ——+— log(J** f)(f? —log(J*™ f)(f(y
| < X e @) s )
we get that
(Juufn .’E n—1
lo Cd(f( C(A\"7I2L).
SR Z (P F) < 2, O

Hence, it suffices to take K = exp(}_cop C(A*2L)). [ |

4. Proof of Theorem A

To prove Theorem A we only have to show that Lebesgue almost every point in
the basin of A is in the basin of some ergodic Gibbs u-state.

LEMMA 4.1: Every uu-disk 0 C A has a positive Lebesgue measure subset of
points which are in the basin of some ergodic Gibbs u-state.

Proof: By Lemma 2.3 every accumulation point of the sequence of averaged
push-forwards of Lebesgue measure supported on o is a Gibbs u-state. Let p, be
any accumulation point and g be an ergodic component of y,. By Corollary 2.8,
Lo is also a Gibbs u-state. Let og be a uu-disk in the support of 1o and such that
Lebesgue almost every point of og is in the basin of pg. Then o is accumulated



Vol. 115, 2000 SRB MEASURES 173

by disks contained in the iterates f"(c). By (H3) and Proposition 2.1, a positive
Lebesgue measure subset of points in op has a local stable manifold. Then for
every large n, f™(o) has a positive Lebesgue measure subset of points which are
in local stable manifolds of points of o¢ and, consequently, are in the basin of
tto. Then the same is true with o in the place of f™(c), which proves our claim.
1

PROPOSITION 4.2: The union of the basins of all the ergodic Gibbs u-states is a
full Lebesgue measure subset of the basin of attraction.

Proof (assuming dim E** = 1): Let pi,...,un be the ergodic Gibbs u-states
of f. Suppose Z = B(A) B(p1) U ---U B(un) had positive Lebesgue mea-
sure. Since the set Z is invariant, Z NV would have positive measure for any
neighbourhood V of A. Take V such that the strong-unstable cone field C** is
defined on it. Let zo be a Lebesgue density point of Z NV, and fix some C!
foliation of a neighbourhood of it, tangent to the strong-unstable bundle E** at
the point zg. The leaves of such a foliation are tangent to the cone field C**,
as long as the neighbourhood is small enough. Moreover, the intersection of
Z NV with some leaf v must have positive Lebesgue measure inside y. Then,
let = be a point of density of YN Z NV C v (B(p1)U--- U B(un)) inside 7.
For each large n, let ¥, be the neighbourhood of radius L around f™(z) inside
f™(v). Then f~"(v,) form a decreasing sequence of neighbourhoods of z. Since
we suppose that <y is one-dimensional, we may conclude that the relative measure
of B(u1) U---U B(un) in f~™(vn) goes to zero as n — oo. Using the bounded
distortion Lemma 3.3, the same remains true with 7, in the place of f~"(yn).
By Ascoli-Arzela, there exists a subsequence 7, converging to some uu-segment
7Yeo- Lemma 4.1 tells us that v has a positive Lebesgue measure subset S; of
points in B(u;) U ---U B{ux). Moreover, there is a positive Lebesgue measure
subset S C Sy of points having local stable manifolds with size bounded from
below. By Corollary 2.2, the union of these local stable manifolds cuts v,, large
n, in a fixed proportion, and this gives a contradiction. ]

The difficulty in extending the proof to higher-dimensional strong-unstable
bundle lies in the construction of disks 7, intersecting the union of the basins
of the Gibbs u-states in a set with small relative measure. Note that if we take
¥» a ball of fixed radius around f™(z) as we did before, then f~"(7,) need not
be a ball, and so we can not use the density point property. Forward iterates
f™(oy) of balls 0, around z are no good either: if we take these f™(o,) with
bounded diameter, as required by the distortion lemma, they may not contain
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a sufficiently large ball, as needed in Corollary 2.2. This difficulty is handled in
Lemma 4.3.

LEMMA 4.3: Let L > 0 be fixed. Given any disk 0 C V tangent to the strong-
unstable cone field, and given any n sufficiently large, there exist open sets V; C
Wi, i=1,...,k(n) such that

(a) theV, are two-by-two disjoint;
(b) Le (U ") W) converges to Leb(s) as n — oo,
(c) each f”( ), i =1,...,k(n), is a ball of radius L inside f™(o);
(d) each f*(W;),i=1,...,k(n), is a ball of radius 2L inside f™(c).

Proof: Given any large enough n, let B(z;, L), i = 1,...,k(n), be a maximal
family of disjoint balls of radius L contained in f™(¢). This means that for any
other £ € f*(o), the ball of radius L around z intersects either the boundary of
o or B(x;, L) for some i = 1,...,k(n). In particular the family B(z;,2L) covers
the set of points in f™(o) whose distance to the boundary is larger than L. We
take

Vi= f—n(B(zivL)) and W;= f_n(B(m‘ia2L))'

We are left to prove part (b) of the statement. For this note that the union of
the W;, i = 1,...,k(n), contains the set of points of o whose distance to the
boundary of o is larger than A®L, where A~! is the rate of expansion of Df on
the strong-unstable cone field. The Lebesgue measure of the complement of this
set goes to zero as n goes to infinity, and so the proof is complete. |

Now we prove the general case of Proposition 4.2.

Proof: Suppose there was a positive Lebesgue measure subset of B(A) not in
B(u1) U---U B(un). Then there would be some disk v tangent to the strong-
unstable cone field and a density point z of v~ (B{g1)U---U B(uy)) inside 7.
This is proved just as in the previous case. Let o,, be a decreasing sequence of
balls around z in 7 such that the relative measure of B(u;) U--- U B(un) in
Om goes to zero as m — oo. For each m let Vi, ; and W, ; be the open sets
obtained by taking o = 0, in Lemma 4.3 (for each m we choose n = n(m) large
enough so that the lemma applies). Since the curvature of the iterates of « is
uniformly bounded, cf. Lemma 3.1, Leb(f*(V;))/ Leb(f™(W;)) is bounded away
from zero (by some constant that depends only on the curvature bound, and
on the dimension of ). Properties (b), (c), (d) in the lemma, combined with
the distortion Lemma 3.3, ensure that the union of V;, ; over all i covers a fixed
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fraction of o,,, for every m. Since these V,,; and V,, ; are disjoint whenever
i # j, and in view of the choice of the 0., we may choose some V,;, ;. so that

Leb (Vin,im) 0 (B(p1) U+ - U B(un)))

0 .
Leb(mei(m)) — asm —» 0o

Using the bounded distortion lemma once more, we conclude that the same is
true with v, = f"(m)(mei(m)) in the place of V, i(m). Recall from (c) that these
~Ym are balls of radius L. Now the proof proceeds precisely as before. |

The proof of Theorem A is now complete.

Remark 4.4: The argument of the proof of Proposition 4.2 proves a bit more:
given any disk v C B(A) tangent to the strong-unstable cone field, Lebesgue
almost every point in <y is in the basin of some ergodic Gibbs u-state. So, recall
Lemma 2.6, A < 0 Lebesgue almost everywhere in .

5. Proof of Theorem B

Finally, we prove Theorem B. More precisely, we show that hypotheses (H4) and
(H5) imply (H3), and that the set S (introduced in Section 2.1) consists of a
unique accessibility class. Then A supports a unique ergodic Gibbs u-state u,
and B(u) contains a full Lebesgue measure subset of the basin of A. We also
deduce that supp u = A.

We fix a uu-disk D** as in (H5), and let Ag be a positive Lebesgue measure
subset such that A (z) < 0 for all z € Ao.

LEMMA 5.1:
1. Given any € > 0 there exists Ly > 0 such that any uu-ball v with radius
larger than L, is e-dense in the attractor A.
2. Given any € > 0 there exists Ly > 0 such that any uu-ball v with radius
larger than Ly contains a subdisk that crosses the tubular neighbourhood
D¥*(¢g) of D¥*.

Proof: The proof of the first part is by contradiction. Suppose that there exists a
sequence v, of uu-balls and a sequence of points z, € A such that radius(y,) > n
and v, N B(z,,e) = B, for every n > 1. Up to taking subsequences, we may
suppose that (z,), converges to some point z € A. Then there exists ng > 1
such that v, N B(z,e/2) = @ for every n > ng, and so

closure ( U Yn) ﬂB(m, %) =0.

n>ng
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On the other hand, closure(l,,,,, 1n) must contain some leaf of 7** (e.g. the
leaf through any accumulation point of the sequence of center points of the v, ),
because radius(y,) — co. Since any such leaf is dense, by (H4), we have reached
a contradiction. The first claim is proved.

To prove the second one, let z¢ be in the interior of D** and choose § > 0
small enough so that any point z € B(zg,6) N A is in a uu-disk v, that crosses
D"*(g). By the first part of the lemma, there exists L; > 0 such that any uu-ball
with radius larger than L, intersects B(zg,d). Take Ly = L; + diam(D"**) + 1.
Given any uu-ball v with radius larger than Lo, let v’ be the uu-ball of radius
Ly centered at the same point. Then v intersects B(xg,d) at some point z. Our
choice of L ensures that v contains v,, and so the proof is complete. |

Condition (H3) is an immediate consequence. Given any wuu-disk 7, some
iterate f™(-y) contains a ball of radius Ly. By Lemma 5.1 this ball intersects the
union of the local stable manifolds of points in Ay in a positive Lebesgue measure
subset By. Then f~"(By) C < has positive Lebesgue measure, and A5 (z) < 0
for every € By. As a consequence we even have A < 0 Lebesgue almost
everywhere in +, cf. Remark 4.4.

The next lemma, which is the last step in the proof of Theorem B, follows
directly from Lemmas 2.4 and 2.9, together with the fact that strong-unstable
leaves are dense. :

LEMMA 5.2: The map f has a unique Gibbs u-state p on A and it is ergodic.
Moreover, the support of i is the whole attractor A.

6. Examples

In this section we describe a number of examples related to our results.

The following notations are useful. Given a disk o tangent to the strong-
unstable cone field, we let d(z, 8c) be the minimum length of a curve in ¢ con-
necting z to a point in the boundary of o, and call it the distance from z to
the boundary of ¢. Then we call internal radius of o

pl{o) = sup d(z, 0o).
z€T
We use similar notions for disks inside leaves of a central foliation F¢. We also
let d.(z,y) be the central distance between two points in a same leaf of F¢,
defined as the length of the shortest curve connecting the two points inside the
central leaf. And we define the central diameter of a subset of a central leaf
using this distance.
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6.1 DA ATTRACTORS. The first class of examples, studied by [Car], consists of
a C'! open set of diffeomorphisms f with transitive attractors on the torus 73,
derived from an Anosov {or globally hyperbolic) diffeomorphism fy through a
Hopf bifurcation. More precisely,
{(a) there exist a constant A < 1 and a D f-invariant splitting of the tangent
space TM = E** @ E° such that dim E** = 1, dim E° = 2,

IDFIE™) T <X and [[(DFVEO|IDSE*)7H < A,

and both subbundles E** and E° are uniquely integrable;

(b) f has a hyperbolic repelling fixed point p, obtained from a hyperbolic saddle

of fo through a Hopf bifurcation;

(c) every strong-unstable leaf of a point in A = T3\ W*(p) is dense in A;

(d) for any uu-segment <y there exists a full Lebesgue measure subset of points

z in 7y such that A$.(2) < 0;
(e) f does not admit an invariant strong-stable (i.e., uniformly contracting)
subbundle E*°.
As a consequence of (c¢), A is nowhere dense and it is transitive for f.

For this class of systems, [Car] proves that there exists an SRB measure sup-
ported on A, and this was a main inspiration for our Theorem B. Since the proof
of property (c) for her systems [Car, Lemma 1} seems to have a gap (there is no
uniform contraction on the central bundle in the whole A, this was pointed out
also by A. A. Castro and J. C. Martin), and this is a key assumption in Theorem
B, we give here a detailed proof, based on an idea of [Mal].

Property {d) is also crucial in Theorem B. For these examples it can be read
out from [Car], but we include (in Section 6.3) a direct argument that applies
also to another class of examples we introduce in the next section. Property (e)
is not in [Car], and we also prove it below.

One considers an Anosov diffeomorphism fo: T2 — T3, with one expanding
and two contracting directions. We suppose that the norm of D f along the stable
subbundle and the norm of Df~! along the unstable bundle are bounded by a
constant Ag < 1/3. Let p be a fixed point of fy and § > 0 be a small constant.
Denote V, = B(p,5/2), and V3 = B(p,35). Then we deform f;* inside V; by
isotopy in such a way that:

(1) the continuation of the fixed point p goes through a Hopf bifurcation, and

becomes a repeller (staying all the time inside V3);

(2) in the process, there always exist a strong-unstable cone field C** and a

centre-stable cone field C**, defined everywhere, such that C*® contains the
stable direction of the initial map fo;
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(3) moreover, the width of the cone fields C** and C** are bounded everywhere
by a small constant o > 0.

In particular, by [HPS], the map f we obtain in this way has an invariant central
foliation F¢, tangent to the cone field C*. Moreover, this foliation is topologically
conjugate to the stable foliation F of fy (because it remains normally expanding
all the way during the isotopy), and so all its leaves are dense in 7'3. On the other
hand, there is also a unique strong-unstable foliation F** invariant under f and
tangent to centre-stable cone field C**, whose leaves are uniformly expanded by
f

(4) There exist a constant ¢ > 1 and a neighbourhood V; of p contained in

Va N W*(p), such that J° = |det Df~}|TF°| > ¢ outside V;.
(5) The map f~!is 6-C° close to f; ! everywhere and it is sufficiently C-close
to fo! outside V5 so that [|[(Df~UTF¢)~!|| < A < 1/3 outside V3.
These conditions hold for a whole C'-open set U of diffeomorphisms of T3.

We fix L > 0 large enough so that every segment of an unstable leaf of fy with
length L/2 is §/2-dense in every stable leaf of fy. Choosing «a in (3) sufficiently
small, we ensure that every segment with length less than 2L in a strong-unstable
leaf of f is C' close to some segment in an unstable leaf of fy, and every disk
of diameter less than 53 contained in a central leaf of f is C! close to some disk
contained in a stable leaf of fy. As a consequence, every segment of length L of a
strong-unstable leaf of f is 6-dense in every central leaf of f (with respect to the
central distance). We suppose that § > 0 is small enough so that the minimum
central distance between two connected components of the intersection of V3 with
any central leaf is larger than 1004.

LEMMA 6.1: For every f € U as before, every strong-unstable leaf is dense in
T3 ~W*¥(p). As a consequence, W*(p) is dense in T3.

Proof: Let W C T® be a nonempty open set not contained in W*(p). Then
there exists some central stable leaf F“ and a nonempty open disk D ¢ W N F¢
which is not contained in W¥(p).

CLAIM 1: Some negative iterate of D has central diameter larger than 1004.

There are two possibilities. If D does not intersect W*(p) at all, then f~™(D)
is disjoint from V; for every n > 1, and so its Lebesgue measure goes to infinity,
by (4). As a consequence, the central diameter of f~"(D) also goes to infinity
as n — oo. Therefore, it suffices to take any large n. In the second case, D must
intersect the boundary of some connected component of W*(p) N F°. It follows
from the local theory of Hopf bifurcations that the boundary dW*(p);e. of the
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connected component C, of W*(p) NV, that contains p coincides with the local
unstable manifold of the invariant circle formed at the bifurcation. In particular,
it is invariant under f~!. Then f~™(D) intersects OW®¥(p)i,. for every large
n > 1. Since f~™(D) is not contained in W*(p), it must contain an open subset
D, outside the connected component C,, and whose boundary touches OW*(p)ioc.
Then the boundary of every f~*(D,) touches OW*(p)ioc. If f~%(D;) is disjoint
from V) for every n > 1, we may use the same argument as in the previous case,
to conclude that the central diameter of f~*(D;) goes to infinity as k — oo. If
f~*(D,) intersects V; for some k > 1, then the closure of f~%(D;) intersects
two connected components of the intersection of V5 with a central leaf. Hence,
due to our choice of &, the central diameter of f~*(D,) is larger than 1005. We
completed the proof of our claim.

This means that, up to replacing D by some iterate f~™(D), we may suppose
right from the start that the central diameter of D is larger than 1004.

CLAIM 2: There exists z in D such that f~"(z) € T3~ V3 for every n > 0.

By our choice of §, the central neighbourhoods of radius 400 around the con-
nected components of V3 N F€¢ are two-by-two disjoint. On the other hand, since
I'o = D has central diameter larger than 1004, it can not be contained in any of
those neighbourhoods. So, by connectivity, there exists zo € 'y whose central
ball By of radius 356 is disjoint from V3. Since Ty is too large to be contained in
By, we may take a compact connected subset I'y C I'g joining o to the boundary
of By. By (5), f~}(By) contains the central ball of radius

;355 > 1006

around f~'(2g). In particular, the diameter of I'y = f~%(I'}) is larger than
1006. Repeating this procedure, we construct a sequence I'n, n > 0, of compact
connected nonempty sets such that

fHTa) € fP 7 Tao1 N V)

for every n > 1. This implies that K, = f*(I';, ~ V3) is a decreasing sequence of
compact sets, and any point z € Ny>o K, satisfies the conclusion of Claim 2.
Now, let = be any such point, that is, f~"(z) ¢ V3 for every n > 1. In
particular, every disk of central radius 26 around an iterate f~"(z) is disjoint
from V. Now let D, be any small disk around z and contained in D. By (5),
iterates f~™(D.) have exponentially increasing internal radius, as long as this
internal radius is smaller than 28. Therefore, there must be some N > 1 for
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which the internal radius of f~V(D,) is at least 2. Then f~N(D,) intersects
every segment of length L of any strong-unstable leaf (and so it intersects every
strong-unstable leaf). Therefore, D, C D intersects every strong-unstable leaf.
This proves that every strong-unstable leaf is dense in the complement of W*(p).

In particular, W*(p) is dense in T° because the strong-unstable leaf of p is dense
in T3\ W¥(p). [ |

We also observe that f can not admit an invariant strong-stable bundle E**.
This is clear if fo has some periodic point ¢ # p with complex contracting eigen-
values. We may choose V3 small enough to be disjoint from the orbit of ¢, and
then g is also a periodic point for f. Since the contracting eigenvalues are also
unchanged, there can be no invariant contracting direction.

With a bit more effort we can obtain the same conclusion when all the periodic
points of the Anosov diffeomorphism have only real eigenvalues. We use the fact
that the invariant circle C formed at the Hopf bifurcation is normally hyperbolic,
see e.g. [RuTa, Remark 7.3]. So, such a strong-stable bundle would be tangent to
the central leaf F*° containing C and transverse to C inside the TF°. Then E**
would be everywhere tangent to the central foliation and transverse to the strong-
unstable manifold W**(C) of C, defined as the union of the strong-unstable leaves
through points of C. Let ¢ be a periodic hyperbolic saddle point of f, of period
k > 1, whose orbit is disjoint from V3 (it exists if V3 is small, i.e. if we fix § small
enough). Then ¢ has stable index 2 and its stable manifold contains a central
ball B, of radius 20 around ¢. In view of the way we have chosen the constant L
associated to §, the local strong-unstable leaves of radius L around every point
€ € C intersects B, transversely. By considering the first (i.e. the closest to {
inside the strong-unstable leaf) intersection of these strong-unstable leaves with
the stable manifold of ¢, we conclude that the intersection of W**(C) with the
stable manifold W*(q) contains some connected component C (a circle). Then
E®® is transverse to every f*(C), j > 1, inside TW*(q). Since the diameter of
f*1(C) goes to zero as j — 0o, we conclude that E** can not be continuous at the
point gq. This contradicts the fact that a strong-stable subbundle is necessarily
Holder continuous.

6.2 TRANSITIVE DIFFEOMORPHISMS WITHOUT STABLE BUNDLE. Using similar
arguments we are, also able to exhibit new C! open sets of transitive diffeomor-
phisms in (the whole) M = T® which admit no invariant strong-stable (or strong-
unstable) subbundle E*. That is, there is a D f-invariant dominated splitting
TM = E¥* @ E° into a 1-dimensional strong-unstable subbundle E** and a 2-
dimensional subbundle E¢. On the other hand E* is not uniformly hyperbolic
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and does admit an invariant subbundle. The first examples of this kind were ex-
hibited by [Bon]. The present construction may be thought of as a modification
of an example of [Mal].

As in the previous section, we start with an Anosov diffeomorphism fy and a
fixed point p of fo. We deform fo by isotopy in a neighbourhood V5 = B(p,4/2)
of p, in such a way that the map f we obtain (actually, a whole C'-open set U
of maps) :

(A) satisfies the global properties (2), (3), (5) above; in particular, f has a
strong-unstable foliation F** and a central foliation F¢ as before;

(B) has three hyperbolic fixed saddle points inside V3, contained in a same
central leaf F°: one saddle with stable index 1 and two saddles with sta-
ble index 2; at least one of the index 2 saddles has complex contracting
eigenvalues;

(C) there exists ¢ > 1 such that J¢ = |det Df ~}|TF°| > ¢ at every point.
One way to obtain (B) is to have p go through a pitchfork bifurcation, as one
of its contracting eigenvalues becomes 1. Then, the stable index changes from
2 to 1, and two other saddle points, of index 2, are created. Then it suffices to
make the contracting eigenvalues of one of these new saddles become complex
numbers. See Figure 1. As before, we suppose that o > 0 and 6 > 0 are small.

Y

Figure 1.

LEMMA 6.2: For every f € U as before, every strong-unstable leaf is dense in
T3. As a consequence, f is transitive.

Proof: As in the first step of the proof of Lemma 6.1, we show that any disk
D in a central leaf has a negative iterate f~™(D) with central diameter larger
than 1008. This follows from property (C), which is a stronger version of the
property (4) we had in the previous case. The second step of the proof of Lemma
6.1 translates immediately to this case, proving that some point z in f~"(D)
has all its negative iterates outside V3 = B(p, 36). The third and last step of the
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proof of Lemma 6.1 also applies without change here: any small disk around z
has a negative iterate which has internal radius larger than 24, and so cuts every
strong-unstable leaf. This proves the first statement in the lemma.

In particular, the unstable manifold of any periodic point is dense in T3. More-
over, by construction, every central leaf of f is dense in 7°. Therefore, to conclude
that f is transitive, it suffices to show that. the stable manifolds of the periodic
points with stable index 2 are dense in some central leaf. Let F¢ be the central
leaf in (B). The fact that fo is contracting on its stable leaves, together with C°-
closeness of f to fo (by [HPS, Theorem 7.1] this yields C?-closeness on central
leaves) imply that every point in F° has a positive iterate in a neighbourhood
of radius 506 <« 1 of the three fixed saddle points contained in F°. Then by
the local description of the dynamics near the saddles, the point is in the stable
manifold of one of the saddles. That is, F° coincides with the union of the stable
manifolds of the three fixed saddles it contains, and this completes the argument.
|

The presence of periodic points with complex contracting eigenvalues ensures
that E€ does not admit any invariant subbundle.

Remark 6.3: We could also start with an Anosov diffeomorphism fy having,
besides p, a periodic point g with complex contracting eigenvalues. In that case,
to get the same conclusions as before one does not need the last condition in (B):
it suffices to make p go through a pitchfork bifurcation, with no need to create
new saddles with complex eigenvalues.

In the next subsection we show that these diffeomorphisms satisfy (H3): the
central direction is mostly contracting at Lebesgue almost every point (in each
strong-unstable leaf, and in the whole manifold M). Then we can also obtain the
following nice consequence of our results.

Remark 6.4: We have shown that Theorem B may be applied to the maps we
constructed above, and so they have a unique SRB measure z, whose basin con-
tains Lebesgue almost all of M. If we start with a volume preserving Anosov
diffeomorphism fy then our construction can be carried out to give maps with
the same properties as above which are also volume preserving (see, for instance,
Section 6.4 where we do this in a different setting). Then, Lebesgue measure
(volume) must be ergodic (Birkhoff averages are constant Lebesgue almost ev-
erywhere), in fact it coincides with u. So, such maps are stably ergodic with
respect to Lebesgue measure.
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6.3 CONTROL OF THE CENTRAL LYAPUNOV EXPONENTS. To complete the con-
struction of the previous examples, in Sections 6.1 and 6.2, we are left to explain
why they are mostly contracting in the central direction. We begin with an
abstract statement, that we apply later to the two classes of examples.

We suppose that A satisfies (H1), (H2), with dim E** = 1. Furthermore, there

exists a domain V C M such that:

(i) there exists E > 0, ¢ € (0,1) such that, given any uu-segment vy with
length(y) > E, we may partition f(v) into segments (1),...,v(k) such
that E < length(v(i)) < 2F for every i = 1,...,k, and the total length of
those y(i) that intersect V is less than cg length(f(7));

(ii) there exist A < 1 and 8 > 0 such that

IDFIES|| < (1+B)forz €V and ||DF|ES||<Aforze M\V,
and, for some k sufficiently large,
(3) M=M1+8)F <1

The precise condition k should satisfy is the following. Let E and ¢y be as in
(i), let K > 0 be the distortion bound given by Lemma 3.3 with L = 2E||Df]},
and ¢ = Kcg/(1+ (K — 1)¢p) < 1. We need

1 1
— — k
(4) ¢y —c(1+ k) (1+k)* <1,
which holds for any large k.

PROPOSITION 6.5: Under these assumptions (H3) holds, in fact XS (z) < 0 for
Lebesgue almost every point in any uu-segment.

Proof: The proof has two main steps. First we use (i) to show that the orbit of
Lebesgue almost every point in any uu-segment 7 spends a positive fraction of
the time outside V. Then condition (ii) implies the conclusion.

Starting the first step, we note that it is no restriction to suppose that
length(y) > E. We decompose successive iterates

ro= U i i

as follows. First we write f(v) = y(1) U---U~(k) as in (i). Then, supposing
v(i1,...,in—1) is defined, with length in between E and 2E, we use (i) once more
to write

f("y(il, e )én—l)) = ’y(il, N ,in_l,l) (G U’y(il,. .. ,in_l,kl)
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(k' depends on i1,...,1p—1). Givenn >r>1land 1 <t < --- <t < mn, we
denote M({ty,...,t,) the following subset of . Firstly, M(¢;) consists of those
points z € -y for which the segment y(i1,...,%,) that contains f*(x) intersects
V. Observe that then f{(M(t;)) is a union of segments v(i1,...,4;) for every
t > t;. Next, we proceed by recurrence: M(ty,...,t—1,t.), 7 > 2, is defined as
the set of points £ € M(ty,...,t-—1) such that fi*(z) is in any of the segments
(415 s8¢, _4,- .-, %, ) that intersects V.

LEMMA 6.6: The Lebesgue measure of M (t1,...,t,) is bounded by ¢" length(v).

Proof: The way we have defined these sets, f*(M(t1,...,t,_1)) is a union of
segments y(i1,...,t) for every t > ¢,_; and, in particular, for t = ¢, — 1. We
write ¢, = (i1,...,%,-1), for simplicity. For each one of these segments, (i) gives

Leb (f(M(ty,-- ., tr—1,t,)) N f(7(2r))) < co length(f(2r)))-

Note that the length of f{(¢,)) is bounded by 2E||Dflj. So, using the distortion
Lemma 3.3,

Leb (M(t1, .- tr—1,tr) N f77 1 (4(er))) < c length(F 7 (v(r))).
Adding over all the (i) contained in for=1(M(t1,...,tr—1)), we get
Leb (M(t1,...,t-—1,t.)) < cLeb (M(t1,...,tr-1)).
The lemma follows by recurrence. |

COROLLARY 6.7: There exists B > 0, a universal constant, such that for any
n > 1 the Lebesgue measure of the subset M, of points in x € + such that
fi(z) € V for at least kn/(k + 1) values of j € {0,...,n — 1} is bounded by
Bn ™+ length(y).

Proof: This set is contained in the union of all M(t,,...,t,) for all choices of
n>r>kn/(k+1)andt,...,t.. So, its Lebesgue measure is bounded by

> (7)e
C .
roknf(kt1) N

We claim that, if »> kn/(k + 1), then

(") <e(a+parni).
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for some universal constant B. Summing over all such r we get the bound in the
statement.
The claim is a classical consequence of Stirling’s formula. Indeed, it gives

n\ _ n! <B n"
r rin—r)! = r"(n—r)» T
for some universal constant B. The last term can be rewritten
mrf n \"" n—r r 5]
& () =|0+=D0+5) 7]
T n—r T n—r

Then it is enough to note that r > kn/(k + 1) is just the same as r > k(n —r).
|

It follows that (51 U;>n
point in the complement spends at least a fraction 1/(k + 1) of the time outside

M; has zero measure. Note that the orbit of any

V. So the first step in the proof of Proposition 6.5 is complete.
The second step is very short:

IDFMBGN < X/ERD (14 /4D < XD

for any point z not in M,,. Recall, from (4), that A\; < 1. ||

Proposition 6.5 enables us to check assumption (H3) whenever f is sufficiently
contracting along the central direction outside V', not too expanding in the central
direction inside V', if one has sufficiently large expansion in the strong-unstable
direction, while keeping the distortion constants not too large.

We apply it to the examples in Sections 6.1, 6.2, with V being the perturbation
box V. To have these conditions satisfied, we just suppose that for the initial
Anosov diffeomorphism fy any vector in the unstable subbundle is expanded
by a factor 3 and any vector in the stable subbundle is contracted by a factor
1/3. Then we deform fy along a one-parameter family of diffeomorphisms f,,, by
isotopy inside V4, to make it go through either a Hopf bifurcation or a pitchfork
bifurcation. The expansion in the unstable/strong-unstable subbundle remains
large everywhere, and the same is true for the contraction in the stable/central
subbundle restricted to the outside of V5. Then the distortion along strong-
unstable leaves remains uniformly bounded in the whole family f,. Moreover,
the deformation can be done in such a way that the f, be contracting along the
central direction, all the way up to the bifurcation parameter up.

Now we choose E > 0 not much smaller than the size of V3, so that the image
of any wu-segment with length bigger than E has a positive fraction cg (in length)
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outside V,. Having fixed these constants, the distortion constant K may also be
fixed, independent of the parameter u, as we already observed. So we may fix
k > 0 large enough to satisfy (4), and then choose 3 sufficiently close to zero so
that (3) also holds. Finally, for parameters just slightly beyond g, any expansion
fu may display in the central direction must be smaller than 1 4 3. In this way
we obtain the hypothesis of Proposition 6.5 (and, hence, its conclusion (H3)) for
the systems in Section 6.1 and in Section 6.2.

6.4 DIFFEOMORPHISMS WITHOUT HYPERBOLIC BUNDLES. Finally, we prove
Theorem C. We start with a linear Anosov diffeomorphism fy induced in T* by
a linear map of R? with eigenvalues

D<A €A2<1/3<1<3<A3< A

Up to replacing it by some iterate, we may suppose that fy has at least two fixed
points p; and p;. Let Fg§ and F§ be the unstable and the stable foliations of
fo. Let 0 < p < 1 be fixed. For ¢ = 1,2 let D}(2p) and D;(2p) be balls of
radius 2p around p; in the unstable, respectively, in the stable leaf through p;.
Fix 0 < 6 < p small enough so that the distance along the leaves of Fj of any
two distinct points in DY (2p) U D¥(2p) is larger than 1006, and similarly for the
distance along the leaves of F¥ of any two distinct points in D$(2p) U D§(2p).
Then let V2 = B(p;,6/2) U B(p2,48/2) and V5 = B(p1,36) U B(p2,38). We also
consider a sufficiently small constant & > 0, the precise condition is stated below.

Now we consider the set V of C! diffeomorphisms f of T* satisfying the

following conditions:

(1) f has a centre-unstable cone field C°* and a centre-stable cone field C¢*
both with width bounded by @ > 0 and containing, respectively, the un-
stable subbundle and the stable subbundle of fy;

(2) there exists o > 1 such that | det D f{TD*| > o for every disk D°* tangent
to the cone field C°* and |det D f|TD| < 0~! for every disk D°® tangent
to the cone field C°;

(3) there exists A < 1/3 so that we have |Df(z)v°*|| > A7!|jv®*| and
[IDf~Y(z)ves|| > A~1||lv°?| for every z outside V» and every v** € C*(z),
,ch € Ccs (.13);

(4) f has some periodic saddle point ¢ with stable index 2, whose stable man-
ifold intersects every disk of radius 26 tangent to C°*, and whose unstable
manifold intersects every disk of radius 24 tangent to C°°.

We suppose that a > 0 is sufficiently small so that (1), together with the way

we have chosen 4, imply that every disk of radius 454 tangent to C°“, respectively
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Ce#, intersects Dj(p) U D3(p), respectively D} (p) U D¥(p), in at most one point.

LEMMA 6.8: Every diffeomorphism f € V is transitive.

Proof: In view of assumption (4), it suffices to show that, for an arbitrary open
set U C T*, some positive iterate contains a disk of radius 26 tangent to C°* and
some negative iterate contains a disk of radius 26 tangent to C°*. Moreover, since
our assumptions are symmetric under taking inverses, we only need to prove the
first statement.

CLAIM: Any open set U C T* contains some point x such that f™(z) avoids V3
for every sufficiently large n.

The lemma is an easy consequence. Indeed, for such a point  we may take a disk
Dy € U around z and tangent to the centre-unstable cone field. Up to replacing
U by some iterate, we may suppose that f*(z) ¢ V3 for every n > 0. If Dy
does not intersect V> then we may use assumption (3) to conclude that f(Dy)
contains a disk D; around f(z) whose radius is twice as large as the radius
of Dy. Repeating this, we construct a sequence of disks around the orbit of z
D;,i=0,1,..., tangent to the centre-unstable cone field, with D; C f(D;_1) and
whose radii increase geometrically. As long as the radius remains smaller than 24
the disk can not intersect V5 and the procedure can be repeated. So, eventually
the radius of some D,, must be larger than 2§, and the lemma follows.

It remains to prove the claim. The argument is similar to those in Lemmas 6.1
and 6.2, with the additional difficulty that this time there may be no invariant
foliations for the map f.

1t is convenient to consider a lift f: R* — R? of f to the universal covering
of the torus. We denote V3,V3 C R? the preimages of V2 and V3 under the
covering map (note that they have infinitely many connected components), and
we use similar notations for lifts of other objects. Let 7* be the projection along
the stable foliation fg from R? to some arbitrary unstable leaf of f (which we
identify with R?). Let F* be an arbitrary leaf of the unstable foliation. For
every n > 0, the image f™(F™) is a graph over R?, in the sense that 7% induces
a diffeomorphism from f™(F*) onto R2. This is just because F* frFY is
a proper embedding of R? ~ F* into R* whose tangent space, being contained
in the lift of the centre-unstable cone field, avoids a cone around the vertical
(stable) direction of R* = R? x R? with width uniformly bounded from zero.

Let D be any disk contained in the intersection of U with some unstable leaf
F* of fo. Assumption (2) implies that the volume of iterates f(D) increases
exponentially fast. Then, since these iterates are contained in graphs tangent to
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C°*, the same is true about the diameter of f» (D). So, some iterate [y = fmo (D)
has diameter larger than 1005. Then I'y can not be contained in a ball inside
f(F™) of radius 458 around any point of D$(p) U D§(p). Since these balls are
two-by-two disjoint, due to our choice of a, and I'y is connected, we conclude
that there exists some zg € I'g such that the ball By of radius 356 around z;
inside f™(F™) does not intersect V3. On the other hand, I'y can not be contained
in By either. So, there exists a compact connected set vy C I'y disjoint from Vs
joining zg to the boundary of By. Then assumption (3) implies that the diameter

of T’y = f(vo) is larger than
%355 > 1006.

By recurrence, we obtain a sequence I'y,, n > 0, of compact connected nonempty
sets with T', C f(Tp_1 > V3). Then f~™(I', \ V3) is a decreasing sequence, and
any point € T* having a lift in the intersection of these compact sets satisfies
the conclusion of the claim. |

We are left to construct diffeomorphisms such that any other diffeomorphism
in a C! neighbourhood satisfies conditions (1) through (4). We do this in such
a way that if the initial Anosov diffeomorphisms f; preserves volume then the
maps obtained are also volume preserving. Roughly, our construction goes as
follows. We consider two different fixed (or periodic) points p; and p,. In a
neighbourhood of p; contained in B(p1,d2) we modify the map along the stable
direction (keeping the unstable direction essentially unchanged) in the same way
as we did for the examples in Section 6.2, see Figure 1. Then we do the same in
a neighbourhood of p; contained in B(pz, d;), exchanging the roles of the stable
and the unstable direction. Let us describe this procedure in more detail.

As a first step, we consider two models of volume preserving vector fields in the
unit 2-dimensional disk D?, which are depicted in Figure 2. Both are zero in a
neighbourhood of the boundary of the D?. The first model, X, has a singularity
of center type at the origin. The second model, Y, has a hyperbolic saddle at
the origin. It may be obtained, for instance, as the Hamiltonian vector field of
some smooth function, which is constant at the boundary and has a saddle type
critical point at the origin.

Next, we construct vector fields X and Y in D? x D?, given by

X(z,y) = (4®)X(2),0), Y(z,y) = (6(y)Y (2),0),

where ¢: D? — [0,1] is a smooth function such that ¢(0) = 1, and ¢ = 0
on a neighbourhood of the boundary of D2. Note that X, Y are still volume
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preserving. Moreover, Y has a singularity at the origin with a strong-unstable,

9

a strong-stable, and two central directions.

Figure 2.

As already mentioned, we obtain our examples by modifying the initial linear
Anosov diffeomorphism fy in neighbourhoods of two different fixed (or periodic)
points p; and p,. We describe the modification in the neighbourhood of py;
the construction for py is just the same, with stable and unstable directions
interchanged. It is useful to consider that this takes place in three stages.

First, we fix a linear chart 1: D? x D? — M mapping 0 to p;, the horizontal
leaves D2 x {y} into the stable leaves of fo, and the vertical leaves {z} x D? into
the unstable leaves of fo. We also suppose that the local unstable manifold of
the saddle point of Y is mapped parallel to the eigenspace corresponding to the
weakest contracting eigenvalue Az of fg.

We consider the one-parameter family of diffeomorphisms f; = (cp,,f’)t o fo
obtained by composing fo with the flow of the push-forward of Y. The point
p, is fixed for every f;; on the other hand, the weakest contracting eigenvalue of
D fi(p) increases as t increases from zero. Eventually, for some ¢t = ¢y (depending
only on Ay and the expanding eigenvalue of Y at the origin) this eigenvalue
becomes equal to 1, then the stable index of p; changes to 1. In the process new
fixed saddles, with stable index 2, are created in the neighbourhood of p;.

As a second stage, we consider gg = f;, for some ¢, slightly larger than to, and
let ¢; be one of the new fixed saddle points with index 2. We modify go in a
neighbourhood of g, disjoint from pq, in the same way as we did before for f close
to p1, except that this time we use X instead of Y. We obtain a one-parameter
family of diffeomorphisms g, such that ¢; is a fixed point of every g,, with the
contracting eigenvalues of Dg,(¢;) becoming equal, and then complex conjugate,
as s becomes larger than some sg.

We choose s; slightly larger than s¢, and let h = g,,. The reason why we
are not done yet is that h may not preserve a thin centre-unstable cone field as
in condition (1). We fix  as in (1). Observe that all the modifications we did
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took place in the direction of the stable foliation of fy. So, on the one hand, this
foliation is still invariant (but not any more contracting) for h; on the other hand,
vectors in unstable subbundle of f; are still expanded by Dh (but the subbundle
itself is no longer invariant). As a consequence, any sufficiently thin cone field
around the stable foliation of fj; is a centre-stable cone field for A.

We choose such a cone field, then its complement C is a strong-unstable cone
field (but it may be very wide). Now we conjugate k in ¢(D? x D?) by some
linear map (z,y) — (rz,y), where (z,y) are coordinates in D? x D? and r > 0
(the conjugated map extends correctly because h = fj is a linear map of T in a
neighbourhood of the image of the local chart). Taking r > 0 sufficiently small
we have that the image C°* of C under this conjugacy has width smaller than
o, and so it is a thin centre-unstable cone field for the new map f. Moreover,
since the stable foliation of f; is still invariant under f, and we have once more
preserved the expansion along the unstable bundle of fy, any cone field with
width less than « centered in the stable subbundle of f; as centre-stable cone
field of f.

Up to dual modifications, carried out independently in a neighbourhood of ps,
this f is the map we were looking for: conditions (1) through (4) stated at the
beginning of this section hold in a C! neighbourhood of f. Indeed (1), (2), (3)
follow from the construction, and for (4) it suffices to choose the chart ¢(D? x D?)
sufficiently small that we keep unchanged arbitrarily large compact disks in the
stable and in the unstable manifolds of the periodic point q.

We close with the following

Conjecture: The class of volume-preserving examples without uniformly hyper-
bolic invariant subbundles that we construct in this section contains C!-stably
ergodic diffeomorphisms (every C! close map that preserves Lebésgue measure
is ergodic with respect to it).
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